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Goal

For a finite relational language L, fix a class K of finite L-structures. For each n, let Kn

be the set of members of K with universe {1, . . . , n}, and sample Mn uniformly from Kn.

Question. For every first-order sentence φ, does

lim
n→∞

P(Mn |= φ)

exist?

Main result. In Fräıssé case, this is equivalent to checking convergence only on finite

conjunctions of extension axioms.
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Fräıssé classes and extension axioms



Fräıssé class

A class K of finite L-structures is a Fräıssé class if it satisfies:

• Hereditary Property (HP). If A ∈ K and B is a substructure of A, then B ∈ K .

• Joint Embedding Property (JEP). For any A,B ∈ K , there exists C ∈ K such

that both A and B embed into C .

• Amalgamation Property (AP). For any embeddings f : A ↪→ B and g : A ↪→ C

with A,B,C ∈ K , there exists D ∈ K and embeddings h : B ↪→ D, k : C ↪→ D

such that h ◦ f = k ◦ g .
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Joint Embedding Property (JEP)

For any A,B ∈ K , there exists C ∈ K such that both embed into C .

A ↘
C

B ↗

• Any two finite structures can be realized together inside a larger one.
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Amalgamation Property (AP)

Given embeddings f : A ↪→ B and g : A ↪→ C :

B

f ↗ ↘ h

A ⟲ D

g ↘ ↗ k

C

• D amalgamates B and C over A.

• This property underlies ultrahomogeneity of the Fräıssé limit.
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Fräıssé limits

Theorem. Let K be a countable class of finite L-structures (up to isomorphism)

satisfying HP, JEP, and AP.

There exists a countable L-structure M such that:

• Age(M) = K ;

• M is ultrahomogeneous: every isomorphism between finite substructures of M

extends to an automorphism of M.

Moreover, M is unique up to isomorphism.

We call M the Fräıssé limit of K , denoted lim(K ).
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Existence

• Enumerate K = {A0,A1,A2, . . . } (up to isomorphism).

• Build an increasing chain

M0 ≤ M1 ≤ M2 ≤ · · ·

of finite structures in K .

• At stage s, use JEP and AP to ensure:

• As embeds into some later Mt ;

• every partial isomorphism between finite substructures can be extended along the

chain.

• Let M =
⋃

s Ms . Then Age(M) = K and M is ultrahomogeneous.
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Uniqueness

Suppose M and N are countable structures with

Age(M) = Age(N) = K and both are ultrahomogeneous.

• Using a back-and-forth argument, build an isomorphism M ∼= N:

• Forth: extend a finite partial isomorphism by embedding the next element of M into

N;

• Back: symmetrically extend by embedding the next element of N into M.

Conclusion: the Fräıssé limit lim(K ) is unique up to isomorphism.
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Extension axioms

Given A,B ∈ K with a strong embedding A ≤ B:

Extension axiom (from A to B) : Any copy of A extends to a copy of B.

This is an ∀∃-sentence.
Extension axioms encode the ultrahomogeneity/extension property of lim(K).
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Formalizing Extension axioms

Fix enumerations A = {a1, . . . , am} and B = {a1, . . . , am, b1, . . . , bt} with A ≤ B. The

extension axiom ξA→B is:

∀x1 · · · ∀xm
(
IsoA(x̄) → ∃y1 · · · ∃yt IsoB(x̄ , ȳ)

)
.

Let

Ext(K) = {ξA→B : A,B ∈ K, A ≤ B}.
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FO limit property vs. 0–1 laws

• FO limit property: for every φ ∈ FO(L),

lim
n→∞

P(Kn, φ) exists in [0, 1].

• 0–1 law: the limit exists and is always in {0, 1}.

Example. In Fräıssé classes with every finite graphs, the 0-1 law holds.

In Fräıssé class of forest of caterpillars, the FO limit property holds.

In class of caterpillars, there are first-order sentences φ such that

lim
n→∞

P(Kn, φ) = p for some 0 < p < 1.
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Main theorem



Main theorem

Theorem (Criterion for FO limit property). Let K be a Fräıssé class in a finite

relational language. Then K has the FO limit property iff for every finite set

Σ ⊆ Ext(K) the limit

lim
n→∞

P(Kn,
∧

Σ)

exists.
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Notes on Main Theorem

• Extension axioms are local combinatorial conditions.

• The theorem reduces convergence for all FO sentences to convergence on a

generating family.

• Asymptotic first-order behavior is already encoded in Ext(K).
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Methodology



Stone space

Let U = Th∀(Age(K)) and let S be the Stone space of complete theories extending U.

• Each sentence θ corresponds to a clopen set [θ] ⊆ S .

• Define measures µn on S by

µn([θ]) := P(Kn, θ).

Goal. Prove µn([φ]) converges for every φ.
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Topological properties of the Stone space

Let S be the Stone space of complete theories extending U = Th∀(Age(K )).

Then S satisfies:

• Compact: every open cover has a finite subcover.

• Hausdorff: distinct points are separated by disjoint open sets.

• Zero-dimensional: S has a basis consisting of clopen sets.

These properties are standard consequences of Stone duality for Boolean algebras.
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A clopen basis generated by extension axioms

Let

C = {[ξ] : ξ ∈ Ext(K )}.

• Each [ξ] is clopen in S .

• C separates points of S .

• The Boolean algebra B generated by C forms a clopen basis of the topology on S .

These follows by that the theory U ∪ Ext(K) is complete.

Thus, every open set in S can be written as a union of sets from B.
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Dual topology

• Probability measures µn are defined on clopen sets [φ].

• To study convergence of measures, we test them against functions.

• The natural class of test functions is C (S), the space of continuous functions.

Goal. Reduce the set of test functions by finding dense subalgebra of C (S).
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Stone–Weierstrass in the zero-dimensional setting

Theorem (Stone–Weierstrass). Let S be a compact Hausdorff, zero-dimensional

space.

Let A ⊆ C (S) be a subalgebra such that:

• A contains the constant functions.

• A separates points of S .

• A is closed under multiplication.

Then A is dense in C (S) with respect to the uniform norm.
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Applying Stone–Weierstrass

Let B be the Boolean algebra of clopen sets generated by extension axioms, and define

A := span{1B : B ∈ B} ⊆ C (S).

Then:

• A contains constant functions.

• A separates points of S .

• A is an algebra under pointwise operations.

Hence, by Stone–Weierstrass,

A = C (S).
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Weak-* convergence from a dense test set

If ∫
h dµn →

∫
h dµ for all h ∈ A,

then µn ⇒ µ weakly, hence∫
f dµn →

∫
f dµ for all f ∈ C (S).
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Main Theorem

Assumption: limits exist for P(Kn,
∧
Σ) for all finite Σ ⊆ Ext(K).

• This gives convergence of µn(B) for all B ∈ B.
• Hence convergence on A, hence µn ⇒ µ.

• For any FO sentence φ, [φ] is clopen, so

µn([φ]) → µ([φ]).

Thus P(Kn, φ) converges for all φ.
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Conclusions and open problems



Conclusions and Applications

• For a Fräıssé class K , the first-order limit property holds if and only if all finite

conjunctions of extension axioms have convergent probabilities.

• This reduces the asymptotic analysis of all first-order sentences to a finite,

combinatorial generating family given by extension axioms.

• For the Fräıssé class of finite graphs, extension axioms are equivalent to extension

properties of RG, which has limits. So, the class satisfies FO limit property.

• For the Fräıssé class of linear orders, extension axioms has limits, so it admits FO

limit property.
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Open problems and Further disscusions

1. (0–1 law) When do all limits lie in {0, 1}? Is there a Fräıssé class which satisfies

FO limit property but not 0-1 law?

2. (Generic 0–1 law) When does the limiting behavior agree with Th(lim(K)) (0 if

Th(lim(K)) |= ¬ϕ and 1 if Th(lim(K)) |= ϕ)?

• In the class of caterpillars, the FO-limit property holds, but 0-1 law fails. (This

class is not Fräıssé)

• In the class of forests of caterpillars, the FO-limit property and 0-1 law holds.

This is shown by O. Heinig, T. M¨uller, M. Noy, and S. Taraz (2024)

• In the class of finite linear orders, the 0-1 law holds, but generic 0-1 law fails.

(With the sentence encoding density property)
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Thank you!
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