Mathematical Structuralism and
the Univalent Foundations

Homotopy Type Theory as Structuralist Foundations

Min Cheol Seo

mail@mincheolseo.com

5th Korea Logic Day X
14 Jan, 2026

Department of Philosophy
Sungkyunkwan University



1. Motivation: A Tale of Two Naturals

Section 1/8



1. Motivation: A Tale of Two Naturals

Section 1/8: Motivation: A Tale of Two Naturals



Motivation: A Tale of Two Naturals

Theorem nat_comm : Goal forall nm : N,
forall n m : nat, n+m=m+ n.
n+m=m+ n. Proof.

Fail apply nat_comm.
e The “usual” naturals Abort.

e Proofs by induction / recursion

Error (summary): expected N, found nat.

e More machine-friendly naturals

Same mathematics, but different types = no direct reuse.

Section 1/8: Motivation: A Tale of Two Naturals



So what? (Not a mere engineering annoyance)

e In practice, we can always patch this: conversions, bridges, duplicated lemmas,
automation.

Section 1/8: Motivation: A Tale of Two Naturals



So what? (Not a mere engineering annoyance)

e In practice, we can always patch this: conversions, bridges, duplicated lemmas,
automation.

e But notice what the patch is doing: it is managing representations, not proving
new mathematics.

Section 1/8: Motivation: A Tale of Two Naturals



So what? (Not a mere engineering annoyance)

e In practice, we can always patch this: conversions, bridges, duplicated lemmas,
automation.

e But notice what the patch is doing: it is managing representations, not proving
new mathematics.

e So the real question is not “can we fix it?" but:

e What, exactly, is the mathematical content shared by both encodings?
e And why doesn't the system give a canonical route for reusing proofs?

Section 1/8: Motivation: A Tale of Two Naturals



So what? (Not a mere engineering annoyance)

e In practice, we can always patch this: conversions, bridges, duplicated lemmas,
automation.

e But notice what the patch is doing: it is managing representations, not proving
new mathematics.

e So the real question is not “can we fix it?" but:

e What, exactly, is the mathematical content shared by both encodings?
e And why doesn't the system give a canonical route for reusing proofs?

Multiple “"equally good” representations can do the same job. So what makes them
the same in the relevant sense—and why doesn't reuse follow automatically?

Section 1/8: Motivation: A Tale of Two Naturals



1. Motivation: A Tale of Two Naturals

2. What Numbers Could Not Be?

3. Structuralism as a Constraint on Language
4. Structuralist Language: Two Constraints
5. The Univalent Foundations

6. Univalence Axiom

7. HoTT as Structuralist Heaven?

8. Conclusions

Section 1/8: Motivation: A Tale of Two Naturals



2. What Numbers Could Not Be?

Section 2/8



2. What Numbers Could Not Be?

Section 2/8: What Numbers Could Not Be? 5/36



Benacerraf’s Arbitrariness Problem

e Arithmetic can be implemented in many ways (e.g. different set-theoretic
reductions).

e These implementations can agree on all arithmetical truths.

Section 2/8: What Numbers Could Not Be? 6/36



Benacerraf’s Arbitrariness Problem

e Arithmetic can be implemented in many ways (e.g. different set-theoretic
reductions).
e These implementations can agree on all arithmetical truths.

e Yet, if we identify numbers with particular sets, the identity claim becomes
arbitrary:
e Why should 3 be this set rather than that set?
e Nothing in arithmetic seems to settle the choice.

Section 2/8: What Numbers Could Not Be? 6/36



Benacerraf’s Arbitrariness Problem

e Arithmetic can be implemented in many ways (e.g. different set-theoretic

reductions).
e These implementations can agree on all arithmetical truths.

e Yet, if we identify numbers with particular sets, the identity claim becomes
arbitrary:

e Why should 3 be this set rather than that set?
e Nothing in arithmetic seems to settle the choice.

The pressure is not to pick the right representative, but to articulate what counts as

content across equally good representations.

Section 2/8: What Numbers Could Not Be? 6/36



Junk: when the foundational language is too expressive

e In ZF-style foundations, € is primitive.

e If numbers are implemented as sets, the language can form questions like:

1€37 2¢€47

Section 2/8: What Numbers Could Not Be? 7/36



Junk: when the foundational language is too expressive

In ZF-style foundations, € is primitive.

If numbers are implemented as sets, the language can form questions like:

1€37 2¢€47

These are not arithmetical questions; they track coding artifacts.

e Across equally good implementations, their truth-values can diverge.

Section 2/8: What Numbers Could Not Be? 7/36



Junk: when the foundational language is too expressive

In ZF-style foundations, € is primitive.

If numbers are implemented as sets, the language can form questions like:

1€37 2¢€47

These are not arithmetical questions; they track coding artifacts.

e Across equally good implementations, their truth-values can diverge.

Junk is not “bad taste”; it is a language-design issue: what your foundation makes
expressible once you commit to a representation.

Section 2/8: What Numbers Could Not Be? 7/36



3. Structuralism as a Constraint on Language

Section 3/8



3. Structuralism as a Constraint on Language

Section 3/8: Structuralism as a Constraint on Language 8/36



Structuralism in 60 seconds

Core thought

Mathematics is primarily about structural roles and relations, not about the thisness

(haecceity) of particular representatives.

Section 3/8: Structuralism as a Constraint on Language 9/36



Structuralism in 60 seconds

Core thought

Mathematics is primarily about structural roles and relations, not about the thisness

(haecceity) of particular representatives.

e Two representations can be “the same for mathematics” even if they are not
literally identical.
e So the slogan is: isomorphic/equivalent structures should be treated as the

same.

Section 3/8: Structuralism as a Constraint on Language



Structuralism in 60 seconds

Core thought

Mathematics is primarily about structural roles and relations, not about the thisness

(haecceity) of particular representatives.

e Two representations can be “the same for mathematics” even if they are not
literally identical.
e So the slogan is: isomorphic/equivalent structures should be treated as the
same.
Not as an ontological thesis first, but as a constraint on what our foundational

language should count as meaningful.

Section 3/8: Structuralism as a Constraint on Language



From representation problems to language constraints

Two symptoms (Section 2) Diagnostic shift

e Arbitrariness: many equally good e Which statements track structural content
representatives = identity claims look (not coding artefacts)?
arbitrary.

e When structures count as “the same”, how
e Junk: expressive primitives + fixed should proofs/constructions move?
representation = non-mathematical

quesiions profieE s Up-shot: read structuralism not first as

ontology, but as a constraint on meaningful
foundational language.

Section 3/8: Structuralism as a Constraint on Language




C1 is standard—but how do we implement it?

C1 (informal)

If A~ B (isomorphic/equivalent), then content-allowed sentences should not distinguish A
from B.

Section 3/8: Structuralism as a Constraint on Language 11/36



C1 is standard—but how do we implement it?

C1 (informal)

If A~ B (isomorphic/equivalent), then content-allowed sentences should not distinguish A
from B.

e A natural attempt: weaken the language so that “junk” becomes inexpressible.

e Example: ETCS replaces primitive € with structural primitives (objects/arrows).

Section 3/8: Structuralism as a Constraint on Language 11/36



C1 is standard—but how do we implement it?

C1 (informal)
If A~ B (isomorphic/equivalent), then content-allowed sentences should not distinguish A

from B.

e A natural attempt: weaken the language so that “junk” becomes inexpressible.

e Example: ETCS replaces primitive € with structural primitives (objects/arrows).

Even without €, primitive equality + naming can reintroduce haecceity. So we still
need a principled boundary for “content-allowed” language.

Section 3/8: Structuralism as a Constraint on Language 11/36



ETCS-style haecceity: “representative-picking” without €

Setup (purely categorical vocabulary)

Let A, B be objects with an isomorphism e : A = B.

Assume we have a named arrow (a global element) o : 1 — A.

Section 3/8: Structuralism as a Constraint on Language 12/36



ETCS-style haecceity: “representative-picking” without €

Setup (purely categorical vocabulary)

Let A, B be objects with an isomorphism e : A = B.
Assume we have a named arrow (a global element) o : 1 — A.

A haecceitistic formula

Let cod : Arr — Obj be “codomain”. Define

o(x) = cod(o) = x.

Section 3/8: Structuralism as a Constraint on Language 12/36



ETCS-style haecceity: “representative-picking” without €

Setup (purely categorical vocabulary)

Let A, B be objects with an isomorphism e : A = B.
Assume we have a named arrow (a global element) o : 1 — A.

A haecceitistic formula

Let cod : Arr — Obj be “codomain”. Define

o(x) = cod(o) = x.

e Then (A) holds by construction (since cod(o) = A).
e But ¢(B) is not forced by A= B: in many models where A # B (strict

object-identity), ¢(B) fails.

Section 3/8: Structuralism as a Constraint on Language 12/36



ETCS-style haecceity: “representative-picking” without €

Setup (purely categorical vocabulary)

Let A, B be objects with an isomorphism e : A = B.
Assume we have a named arrow (a global element) o : 1 — A.

A haecceitistic formula

Let cod : Arr — Obj be “codomain”. Define

o(x) = cod(o) = x.

e Then (A) holds by construction (since cod(o) = A).
e But ¢(B) is not forced by A= B: in many models where A # B (strict

object-identity), ¢(B) fails.

So "no €" does not by itself block representative-picking. The culprit is primitive

Section 3/8: Structuralism as a Constraint on Language 12/36



Transition: from ETCS to identity-sensitive language design

e ETCS can weaken one major junk-generator (€), but haecceity can re-enter.

Section 3/8: Structuralism as a Constraint on Language 13/36



Transition: from ETCS to identity-sensitive language design

e ETCS can weaken one major junk-generator (€), but haecceity can re-enter.

e Diagnosis: if your foundational language lets you write “this object is that very
object”, C1 will be fragile.

Section 3/8: Structuralism as a Constraint on Language 13/36



Transition: from ETCS to identity-sensitive language design

e ETCS can weaken one major junk-generator (€), but haecceity can re-enter.

e Diagnosis: if your foundational language lets you write “this object is that very
object”, C1 will be fragile.

e So a more radical design move suggests itself:

e Restrict (or reconstruct) object-identity in the language, rather than taking it as

primitive.

Section 3/8: Structuralism as a Constraint on Language 13/36



Transition: from ETCS to identity-sensitive language design

e ETCS can weaken one major junk-generator (€), but haecceity can re-enter.

e Diagnosis: if your foundational language lets you write “this object is that very
object”, C1 will be fragile.
e So a more radical design move suggests itself:

e Restrict (or reconstruct) object-identity in the language, rather than taking it as

primitive.

This motivates treating structuralism as explicit constraints (C1/C2), and then
asking what kind of language can actually realise them.

Section 3/8: Structuralism as a Constraint on Language 13/36



4. Structuralist Language: Two Constraints

Section 4/8



4. Structuralist Language: Two Constraints

Section 4/8: Structuralist Language: Two Constraints



Two constraints on a structuralist foundation

C1: Content invariance C2: Canonical transfer

Fix a notion of structural sameness ~ Not only truth, but constructions must
(iso/equiv/...). move: definitions, lemmas, witnesses, proofs.

Content-allowed statements should not
distinguish x ~ y.
Trp: (X = Y) x P(X) — P(Y)
x =y = (p(x) & o(y))

Section 4/8: Structuralist Language: Two Constraints



Two constraints on a structuralist foundation

C1: Content invariance C2: Canonical transfer

Fix a notion of structural sameness ~ Not only truth, but constructions must
(iso/equiv/...). move: definitions, lemmas, witnesses, proofs.

Content-allowed statements should not
distinguish x ~ y.
Trp: (X = Y) x P(X) — P(Y)

x =y = (p(x) < ¢(y))

C1 is about truth-values.
C2 is about reuse and stability of reasoning.

Section 4/8: Structuralist Language: Two Constraints



C2 is not “same proof script” (a precise reading)

What C2 does not say

It does not demand that the same syntactic proof text works across presentations.

Section 4/8: Structuralist Language: Two Constraints



C2 is not “same proof script” (a precise reading)

What C2 does not say

It does not demand that the same syntactic proof text works across presentations.

What C2 does say

Given evidence e : X &~ Y/, there should be a canonical and coherent transport of

structure/content across e.

fy = eofxoe ! Ry(¥) <= Rx(e7'(¥))

Section 4/8: Structuralist Language: Two Constraints



C2 is not “same proof script” (a precise reading)

What C2 does not say

It does not demand that the same syntactic proof text works across presentations.

What C2 does say

Given evidence e : X &~ Y/, there should be a canonical and coherent transport of

structure/content across e.

fy = eofxoe ! Ry(¥) <= Rx(e7'(¥))

C2 is a rule for moving meaning and constructions, not a demand for textual

reuse.

Section 4/8: Structuralist Language: Two Constraints



C2 as a design spec + practice-based criteria

Methodological stance

C2 is not a metaphysical conclusion of structuralism. It is a specification for a foundational

language meant to support structural practice.

Section 4/8: Structuralist Language: Two Constraints



C2 as a design spec + practice-based criteria

Methodological stance

C2 is not a metaphysical conclusion of structuralism. It is a specification for a foundational

language meant to support structural practice.

e Practice criterion 1 (“up to isomorphism”):
Mathematicians routinely treat isomorphic presentations as interchangeable. That
norm implicitly presupposes robust transfer of constructions.

Section 4/8: Structuralist Language: Two Constraints



C2 as a design spec + practice-based criteria

Methodological stance

C2 is not a metaphysical conclusion of structuralism. It is a specification for a foundational

language meant to support structural practice.

e Practice criterion 1 (“up to isomorphism”):
Mathematicians routinely treat isomorphic presentations as interchangeable. That
norm implicitly presupposes robust transfer of constructions.

e Practice criterion 2 (large-scale formalization / social practice):
If we want reusable libraries and collaborative formalization, non-canonical
transfer becomes a scalability bottleneck.

Section 4/8: Structuralist Language: Two Constraints



C2 as a design spec + practice-based criteria

Methodological stance

C2 is not a metaphysical conclusion of structuralism. It is a specification for a foundational

language meant to support structural practice.

e Practice criterion 1 (“up to isomorphism”):
Mathematicians routinely treat isomorphic presentations as interchangeable. That
norm implicitly presupposes robust transfer of constructions.

e Practice criterion 2 (large-scale formalization / social practice):
If we want reusable libraries and collaborative formalization, non-canonical
transfer becomes a scalability bottleneck.

So C2 is justified as a language-engineering requirement whose success is
measured against mathematical practice.

Section 4/8: Structuralist Language: Two Constraints



C2 in everyday mathematics (one intuition)

A familiar pattern

Same object, different presentation = we expect a canonical rule to move data/proofs
across presentations.

Section 4/8: Structuralist Language: Two Constraints




C2 in everyday mathematics (one intuition)

A familiar pattern

Same object, different presentation = we expect a canonical rule to move data/proofs
across presentations.

e Linear algebra: change of basis changes notation, but comes with a canonical
transformation.

e Graphs: relabeling changes names, but an isomorphism canonically transports

witnesses.

Section 4/8: Structuralist Language: Two Constraints



C2 in everyday mathematics (one intuition)

A familiar pattern
Same object, different presentation = we expect a canonical rule to move data/proofs

across presentations.

e Linear algebra: change of basis changes notation, but comes with a canonical
transformation.
e Graphs: relabeling changes names, but an isomorphism canonically transports

witnesses.

Transfer must not be merely possible; it should be canonical and coherent.

Section 4/8: Structuralist Language: Two Constraints



5. The Univalent Foundations

Section 5/8



5. The Univalent Foundations

Section 5/8: The Univalent Foundations



HoTT/UF: what is the package?

Two layers

e Syntax (MLTT): dependent types + identity types (x = y).

e Semantics (homotopy): interpret types as spaces / co-groupoids.

Section 5/8: The Univalent Foundations



HoTT/UF: what is the package?

Two layers

e Syntax (MLTT): dependent types + identity types (x = y).

e Semantics (homotopy): interpret types as spaces / co-groupoids.

In HoTT/UF, equality is structured (not just a truth-value), and it comes with a
built-in mechanism for transport.

e This is exactly the kind of mechanism C2 was asking for.

e Univalence then extends it from (=) to (=).

Section 5/8: The Univalent Foundations



The oco-groupoid viewpoint (one diagram, one moral)

Reading a type A i

terms a : A are points 2 b

e proofs p : a = b are paths q

e proofs a: p = g are homotopies (paths
between paths)

and so on = higher equalities

Section 5/8: The Univalent Foundations



The oco-groupoid viewpoint (one diagram, one moral)

Reading a type A i
e terms a: A are points 2 <1D b

e proofs p : a = b are paths q

e proofs a: p = g are homotopies (paths
between paths)

e and so on = higher equalities

“Sameness” is not a bare predicate: it has internal coherence data. This is why
HoTT/UF is a natural habitat for C2-style constraints.

Section 5/8: The Univalent Foundations



Identity types: equality as an object you can use

Identity type (informal)

For a,b: A, the type (a = b) is the type of identifications of a and b. Aterm p:a=bis a

witness of equality.

Section 5/8: The Univalent Foundations 22/36



Identity types: equality as an object you can use

Identity type (informal)

For a,b: A, the type (a = b) is the type of identifications of a and b. Aterm p:a=bis a

witness of equality.

e This makes equality first-class: you can quantify over it and compute with it.

e Higher equalities (p = q) are also internal objects, enabling coherence control.

Section 5/8: The Univalent Foundations



Identity types: equality as an object you can use

Identity type (informal)

For a,b: A, the type (a = b) is the type of identifications of a and b. Aterm p:a=bis a

witness of equality.

e This makes equality first-class: you can quantify over it and compute with it.

e Higher equalities (p = q) are also internal objects, enabling coherence control.

C2 needs evidence-sensitive transfer. In HoTT, such evidence is literally p : a = b.

Section 5/8: The Univalent Foundations



Path induction (J): the core rule for reasoning about identity

Path induction (informal statement)

To prove something about an arbitrary p : x = y, it suffices to prove it in the case
p =refl, 1 x = x.

Section 5/8: The Univalent Foundations 23/36



Path induction (J): the core rule for reasoning about identity

Path induction (informal statement)

To prove something about an arbitrary p : x = y, it suffices to prove it in the case
p =refl, 1 x = x.

Schematic form

Given a family C: [, . A(x=y) = U,
if you have c : [,.4 C(x,x,refly), then you get

J(c): H H C(x,y,p).

X,y:A p:x=y

Section 5/8: The Univalent Foundations




Path induction (J): the core rule for reasoning about identity

Path induction (informal statement)

To prove something about an arbitrary p : x = y, it suffices to prove it in the case
p =refl, 1 x = x.

Schematic form

Given a family C: [, . A(x=y) = U,
if you have c : [,.4 C(x,x,refly), then you get

J(c): H H C(x,y,p).

X,y:A p:x=y

This is what makes transport canonical and coherent (no ad hoc choices).

Section 5/8: The Univalent Foundations




Transport: C2 for definable families comes “for free”

Transport (key construction)

Let P: A— U and p: x = y. Then there is a canonical map

transportp(p, —) : P(x) = P(y).

Section 5/8: The Univalent Foundations



Transport: C2 for definable families comes “for free”

Transport (key construction)

Let P: A— U and p: x = y. Then there is a canonical map

transportp(p, —) : P(x) = P(y).

e transportp(refl,, —) is judgmentally the identity.

e Transport respects composition of paths = coherence “built-in".

Section 5/8: The Univalent Foundations



Transport: C2 for definable families comes “for free”

Transport (key construction)

Let P: A— U and p: x = y. Then there is a canonical map

transportp(p, —) : P(x) = P(y).

e transportp(refl,, —) is judgmentally the identity.

e Transport respects composition of paths = coherence “built-in".

For (=), HoTT already implements the core of C2: canonical transfer.

Section 5/8: The Univalent Foundations



6. Univalence Axiom

Section 6/8



6. Univalence Axiom

Section 6/8: Univalence Axiom



The gap: we need transport along ~, not only along =

e Structuralism works with a notion of sameness ~ (iso/equiv/...).

e But HoTT's built-in transport is along identity (=).

Section 6/8: Univalence Axiom



The gap: we need transport along ~, not only along =

e Structuralism works with a notion of sameness ~ (iso/equiv/...).
e But HoTT's built-in transport is along identity (=).

e So: how do we get canonical transport along equivalence?

Section 6/8: Univalence Axiom



The gap: we need transport along ~, not only along =

e Structuralism works with a notion of sameness ~ (iso/equiv/...).
e But HoTT's built-in transport is along identity (=).
e So: how do we get canonical transport along equivalence?

It turns equivalence into a source of identity.

Section 6/8: Univalence Axiom



Univalence (statement)

Univalence (slogan)

For types A, B : U, identity is equivalent to equivalence:

(A=B)~ (A~ B).

Section 6/8: Univalence Axiom



Univalence (statement)

Univalence (slogan)

For types A, B : U, identity is equivalent to equivalence:

(A=B)~ (A~ B).

e A term p: A= B gives an equivalence (by transport).

e Univalence adds (roughly) the converse: an equivalence gives a path.

Section 6/8: Univalence Axiom



Univalence (statement)

Univalence (slogan)

For types A, B : U, identity is equivalent to equivalence:

(A=B)~ (A~ B).

e A term p: A= B gives an equivalence (by transport).

e Univalence adds (roughly) the converse: an equivalence gives a path.

Univalence internalizes the principle: “equivalent structures count as equal”.

Section 6/8: Univalence Axiom



Univalence = transport along equivalence (the C2 engine for =)

From equivalence to transport

Assume e : A ~ B. By univalence, obtain a path p: A= B. Then for any P : U — V we get

Trp(e,—) := transportp(p,—): P(A) — P(B).

Section 6/8: Univalence Axiom



Univalence = transport along equivalence (the C2 engine for =)

From equivalence to transport

Assume e : A ~ B. By univalence, obtain a path p: A= B. Then for any P : U — V we get

Trp(e,—) := transportp(p,—): P(A) — P(B).

e Canonical: depends only on e via p (no extra choices).

e Coherent: inherits coherence laws from path induction.

Section 6/8: Univalence Axiom



Univalence = transport along equivalence (the C2 engine for =)

From equivalence to transport

Assume e : A ~ B. By univalence, obtain a path p: A= B. Then for any P : U — V we get

Trp(e,—) := transportp(p,—): P(A) — P(B).

e Canonical: depends only on e via p (no extra choices).

e Coherent: inherits coherence laws from path induction.

Evidence-sensitive, canonical, coherent transfer under ~.

Section 6/8: Univalence Axiom



C1 and C2 become internal lemmas (clean payoff)

Lemma-form C2 Lemma-form C1

Forany P:U — V), For any P : U — Prop,
e: A~ B = Trp(e,—): P(A) = P(B). e: A~ B = (P(A) + P(B)).
e “Reuse” becomes definable transport. e Content invariance follows from
e Coherence is inherited (not bolted transport.
on). e "“Up to equivalence” is built into
meaning.

Section 6/8: Univalence Axiom



C1 and C2 become internal lemmas (clean payoff)

Lemma-form C2 Lemma-form C1

Forany P:U — V), For any P : U — Prop,
e: A~ B = Trp(e,—): P(A) = P(B). e: A~ B = (P(A) + P(B)).
e “Reuse” becomes definable transport. e Content invariance follows from
e Coherence is inherited (not bolted transport.
on). e "“Up to equivalence” is built into
meaning.

Because it is a foundational language where the structuralist constraints (C1
invariance, C2 canonical transfer) are implemented, not merely postulated.

Section 6/8: Univalence Axiom



7. HoTT as Structuralist Heaven?

Section 7/8



7. HOTT as Structuralist Heaven?

Section 7/8: HoTT as Structuralist Heaven? 30/36



What HoTT/UF delivers (and what it does not)

What we gained

e A built-in notion of evidence-sensitive, coherent transport (via identity).

e Univalence: equivalence becomes a source of transport = C1/C2 internalized.

Section 7/8: HoTT as Structuralist Heaven? 31/36



What HoTT/UF delivers (and what it does not)

What we gained

e A built-in notion of evidence-sensitive, coherent transport (via identity).

e Univalence: equivalence becomes a source of transport = C1/C2 internalized.

UF provides a principled mechanism, not a guarantee that all practical burdens
disappear.

Section 7/8: HoTT as Structuralist Heaven? 31/36



Limitation 1: propositional vs definitional equality

The gap

Univalence typically yields propositional equality (paths), while rewriting/computation in

proof assistants often relies on definitional equality.

Section 7/8: HoTT as Structuralist Heaven? 32/36



Limitation 1: propositional vs definitional equality

The gap

Univalence typically yields propositional equality (paths), while rewriting/computation in

proof assistants often relies on definitional equality.

e You can transport along equivalences, but it may not compute "by definition”.

e So reuse is principled, yet automation can still require work (rewriting steps,
lemmas).

Section 7/8: HoTT as Structuralist Heaven? 32/36



Limitation 1: propositional vs definitional equality

The gap

Univalence typically yields propositional equality (paths), while rewriting/computation in

proof assistants often relies on definitional equality.

e You can transport along equivalences, but it may not compute "by definition”.

e So reuse is principled, yet automation can still require work (rewriting steps,
lemmas).

HoTT/UF improves the theory of reuse; engineering smoothness is an additional
layer.

Section 7/8: HoTT as Structuralist Heaven? 32/36



Limitation 2: the content-boundary problem remains

C1 is still a design choice

Even in HoTT/UF, "what counts as structural content” depends on:

e which sameness notion you adopt (equivalence, iso in a structure, etc.)

e which predicates you allow (Prop vs Type, truncation levels, etc.)

Section 7/8: HoTT as Structuralist Heaven? 33/36



Limitation 2: the content-boundary problem remains

C1 is still a design choice

Even in HoTT/UF, "what counts as structural content” depends on:

e which sameness notion you adopt (equivalence, iso in a structure, etc.)

e which predicates you allow (Prop vs Type, truncation levels, etc.)

UF does not delete all junk automatically; it gives a cleaner workshop to articulate
and enforce content constraints.

Section 7/8: HoTT as Structuralist Heaven? 33/36



Limitation 3: “canonical”’ comes in strengths

Canonical transfer is not one thing

There are different targets:

e Existence of transport (weak)
e Chosen transport (constructive/canonical as a function)

e Computational transport (strong: good definitional behavior)

Section 7/8: HoTT as Structuralist Heaven? 34/36



Limitation 3: “canonical”’ comes in strengths

Canonical transfer is not one thing

There are different targets:

e Existence of transport (weak)

e Chosen transport (constructive/canonical as a function)

Computational transport (strong: good definitional behavior)

e HoTT gives coherence robustly; computation friendliness can still be subtle.

So C2-as-spec often splits into: coherence vs computation.

Section 7/8: HoTT as Structuralist Heaven? 34/36



Limitation 3: “canonical”’ comes in strengths

Canonical transfer is not one thing

There are different targets:

e Existence of transport (weak)

e Chosen transport (constructive/canonical as a function)

Computational transport (strong: good definitional behavior)

e HoTT gives coherence robustly; computation friendliness can still be subtle.

e So C2-as-spec often splits into: coherence vs computation.

UF is a major step, but “structuralist heaven” is an overstatement.

Section 7/8: HoTT as Structuralist Heaven? 34/36



8. Conclusions

Section 8/8



8. Conclusions

Section 8/8: Conclusions 35/36



Conclusions

e Proof assistants expose a genuine tension: same mathematics, no direct reuse
(representation sensitivity).

Section 8/8: Conclusions 36/36



Conclusions

e Proof assistants expose a genuine tension: same mathematics, no direct reuse
(representation sensitivity).

e Benacerraf + Junk motivates reading structuralism as a constraint on
foundational language (not ontology first).

Section 8/8: Conclusions 36/36



Conclusions

e Proof assistants expose a genuine tension: same mathematics, no direct reuse
(representation sensitivity).

e Benacerraf + Junk motivates reading structuralism as a constraint on
foundational language (not ontology first).

e Structuralist constraints split into:

e C1: invariance of content under ~
e C2: canonical, coherent transfer under ~

Section 8/8: Conclusions 36/36



Conclusions

e Proof assistants expose a genuine tension: same mathematics, no direct reuse
(representation sensitivity).
e Benacerraf + Junk motivates reading structuralism as a constraint on
foundational language (not ontology first).
e Structuralist constraints split into:
e C1: invariance of content under =
e C2: canonical, coherent transfer under ~
e HoTT/UF provides an implementation path: identity = transport, univalence
= transport along equivalence.

Section 8/8: Conclusions 36/36



Conclusions

e Proof assistants expose a genuine tension: same mathematics, no direct reuse
(representation sensitivity).
e Benacerraf + Junk motivates reading structuralism as a constraint on
foundational language (not ontology first).
e Structuralist constraints split into:
e C1: invariance of content under =
e C2: canonical, coherent transfer under ~
e HoTT/UF provides an implementation path: identity = transport, univalence
= transport along equivalence.

UF does not finish structuralism; it turns structuralist constraints into executable
design principles, while leaving further design choices open.

Section 8/8: Conclusions 36/36



Thank you.

mail@mincheolseo.com

Section 8/8: Conclusions 36/36



	Motivation: A Tale of Two Naturals
	What Numbers Could Not Be?
	Structuralism as a Constraint on Language
	Structuralist Language: Two Constraints
	The Univalent Foundations
	Univalence Axiom
	HoTT as Structuralist Heaven?
	Conclusions

