
x y

p

q

α

Mathematical Structuralism and

the Univalent Foundations

Homotopy Type Theory as Structuralist Foundations

Min Cheol Seo

mail@mincheolseo.com

5th Korea Logic Day

14 Jan, 2026

Department of Philosophy

Sungkyunkwan University



1. Motivation: A Tale of Two Naturals

Section 1/8



Outline

1. Motivation: A Tale of Two Naturals

2. What Numbers Could Not Be?

3. Structuralism as a Constraint on Language

4. Structuralist Language: Two Constraints

5. The Univalent Foundations

6. Univalence Axiom

7. HoTT as Structuralist Heaven?

8. Conclusions

Section 1/8: Motivation: A Tale of Two Naturals 1/36



Motivation: A Tale of Two Naturals

nat (Peano)

Theorem nat_comm :

forall n m : nat,

n + m = m + n.

• The “usual” naturals

• Proofs by induction / recursion

N (binary)

Goal forall n m : N,

n + m = m + n.

Proof.

Fail apply nat_comm.

Abort.

Error (summary): expected N, found nat.

• More machine-friendly naturals

Problem?

Same mathematics, but different types ⇒ no direct reuse.

Section 1/8: Motivation: A Tale of Two Naturals 2/36



So what? (Not a mere engineering annoyance)

• In practice, we can always patch this: conversions, bridges, duplicated lemmas,

automation.

• But notice what the patch is doing: it is managing representations, not proving

new mathematics.

• So the real question is not “can we fix it?” but:

• What, exactly, is the mathematical content shared by both encodings?

• And why doesn’t the system give a canonical route for reusing proofs?

Philosophical motivation

Multiple “equally good” representations can do the same job. So what makes them

the same in the relevant sense—and why doesn’t reuse follow automatically?

Section 1/8: Motivation: A Tale of Two Naturals 3/36



So what? (Not a mere engineering annoyance)

• In practice, we can always patch this: conversions, bridges, duplicated lemmas,

automation.

• But notice what the patch is doing: it is managing representations, not proving

new mathematics.

• So the real question is not “can we fix it?” but:

• What, exactly, is the mathematical content shared by both encodings?

• And why doesn’t the system give a canonical route for reusing proofs?

Philosophical motivation

Multiple “equally good” representations can do the same job. So what makes them

the same in the relevant sense—and why doesn’t reuse follow automatically?

Section 1/8: Motivation: A Tale of Two Naturals 3/36



So what? (Not a mere engineering annoyance)

• In practice, we can always patch this: conversions, bridges, duplicated lemmas,

automation.

• But notice what the patch is doing: it is managing representations, not proving

new mathematics.

• So the real question is not “can we fix it?” but:

• What, exactly, is the mathematical content shared by both encodings?

• And why doesn’t the system give a canonical route for reusing proofs?

Philosophical motivation

Multiple “equally good” representations can do the same job. So what makes them

the same in the relevant sense—and why doesn’t reuse follow automatically?

Section 1/8: Motivation: A Tale of Two Naturals 3/36



So what? (Not a mere engineering annoyance)

• In practice, we can always patch this: conversions, bridges, duplicated lemmas,

automation.

• But notice what the patch is doing: it is managing representations, not proving

new mathematics.

• So the real question is not “can we fix it?” but:

• What, exactly, is the mathematical content shared by both encodings?

• And why doesn’t the system give a canonical route for reusing proofs?

Philosophical motivation

Multiple “equally good” representations can do the same job. So what makes them

the same in the relevant sense—and why doesn’t reuse follow automatically?

Section 1/8: Motivation: A Tale of Two Naturals 3/36



Outline

1. Motivation: A Tale of Two Naturals

2. What Numbers Could Not Be?

3. Structuralism as a Constraint on Language

4. Structuralist Language: Two Constraints

5. The Univalent Foundations

6. Univalence Axiom

7. HoTT as Structuralist Heaven?

8. Conclusions

Section 1/8: Motivation: A Tale of Two Naturals 4/36



2. What Numbers Could Not Be?

Section 2/8



Outline

1. Motivation: A Tale of Two Naturals

2. What Numbers Could Not Be?

3. Structuralism as a Constraint on Language

4. Structuralist Language: Two Constraints

5. The Univalent Foundations

6. Univalence Axiom

7. HoTT as Structuralist Heaven?

8. Conclusions

Section 2/8: What Numbers Could Not Be? 5/36



Benacerraf’s Arbitrariness Problem

• Arithmetic can be implemented in many ways (e.g. different set-theoretic

reductions).

• These implementations can agree on all arithmetical truths.

• Yet, if we identify numbers with particular sets, the identity claim becomes
arbitrary:

• Why should 3 be this set rather than that set?

• Nothing in arithmetic seems to settle the choice.

Benacerraf’s moral I

The pressure is not to pick the right representative, but to articulate what counts as

content across equally good representations.

Section 2/8: What Numbers Could Not Be? 6/36



Benacerraf’s Arbitrariness Problem

• Arithmetic can be implemented in many ways (e.g. different set-theoretic

reductions).

• These implementations can agree on all arithmetical truths.

• Yet, if we identify numbers with particular sets, the identity claim becomes
arbitrary:

• Why should 3 be this set rather than that set?

• Nothing in arithmetic seems to settle the choice.

Benacerraf’s moral I

The pressure is not to pick the right representative, but to articulate what counts as

content across equally good representations.

Section 2/8: What Numbers Could Not Be? 6/36



Benacerraf’s Arbitrariness Problem

• Arithmetic can be implemented in many ways (e.g. different set-theoretic

reductions).

• These implementations can agree on all arithmetical truths.

• Yet, if we identify numbers with particular sets, the identity claim becomes
arbitrary:

• Why should 3 be this set rather than that set?

• Nothing in arithmetic seems to settle the choice.

Benacerraf’s moral I

The pressure is not to pick the right representative, but to articulate what counts as

content across equally good representations.

Section 2/8: What Numbers Could Not Be? 6/36



Junk: when the foundational language is too expressive

• In ZF-style foundations, ∈ is primitive.

• If numbers are implemented as sets, the language can form questions like:

1 ∈ 3 ? 2 ∈ 4 ?

• These are not arithmetical questions; they track coding artifacts.

• Across equally good implementations, their truth-values can diverge.

Benacerraf’s moral II

Junk is not “bad taste”; it is a language-design issue: what your foundation makes

expressible once you commit to a representation.

Section 2/8: What Numbers Could Not Be? 7/36



Junk: when the foundational language is too expressive

• In ZF-style foundations, ∈ is primitive.

• If numbers are implemented as sets, the language can form questions like:

1 ∈ 3 ? 2 ∈ 4 ?

• These are not arithmetical questions; they track coding artifacts.

• Across equally good implementations, their truth-values can diverge.

Benacerraf’s moral II

Junk is not “bad taste”; it is a language-design issue: what your foundation makes

expressible once you commit to a representation.

Section 2/8: What Numbers Could Not Be? 7/36



Junk: when the foundational language is too expressive

• In ZF-style foundations, ∈ is primitive.

• If numbers are implemented as sets, the language can form questions like:

1 ∈ 3 ? 2 ∈ 4 ?

• These are not arithmetical questions; they track coding artifacts.

• Across equally good implementations, their truth-values can diverge.

Benacerraf’s moral II

Junk is not “bad taste”; it is a language-design issue: what your foundation makes

expressible once you commit to a representation.

Section 2/8: What Numbers Could Not Be? 7/36



3. Structuralism as a Constraint on Language

Section 3/8



Outline

1. Motivation: A Tale of Two Naturals

2. What Numbers Could Not Be?

3. Structuralism as a Constraint on Language

4. Structuralist Language: Two Constraints

5. The Univalent Foundations

6. Univalence Axiom

7. HoTT as Structuralist Heaven?

8. Conclusions

Section 3/8: Structuralism as a Constraint on Language 8/36



Structuralism in 60 seconds

Core thought

Mathematics is primarily about structural roles and relations, not about the thisness

(haecceity) of particular representatives.

• Two representations can be “the same for mathematics” even if they are not

literally identical.

• So the slogan is: isomorphic/equivalent structures should be treated as the

same.

How I will read this today

Not as an ontological thesis first, but as a constraint on what our foundational

language should count as meaningful.

Section 3/8: Structuralism as a Constraint on Language 9/36



Structuralism in 60 seconds

Core thought

Mathematics is primarily about structural roles and relations, not about the thisness

(haecceity) of particular representatives.

• Two representations can be “the same for mathematics” even if they are not

literally identical.

• So the slogan is: isomorphic/equivalent structures should be treated as the

same.

How I will read this today

Not as an ontological thesis first, but as a constraint on what our foundational

language should count as meaningful.

Section 3/8: Structuralism as a Constraint on Language 9/36



Structuralism in 60 seconds

Core thought

Mathematics is primarily about structural roles and relations, not about the thisness

(haecceity) of particular representatives.

• Two representations can be “the same for mathematics” even if they are not

literally identical.

• So the slogan is: isomorphic/equivalent structures should be treated as the

same.

How I will read this today

Not as an ontological thesis first, but as a constraint on what our foundational

language should count as meaningful.

Section 3/8: Structuralism as a Constraint on Language 9/36



From representation problems to language constraints

Two symptoms (Section 2)

• Arbitrariness: many equally good

representatives ⇒ identity claims look

arbitrary.

• Junk: expressive primitives + fixed

representation ⇒ non-mathematical

questions proliferate.

Diagnostic shift

• Which statements track structural content

(not coding artefacts)?

• When structures count as “the same”, how

should proofs/constructions move?

Up-shot: read structuralism not first as

ontology, but as a constraint on meaningful

foundational language.

Section 3/8: Structuralism as a Constraint on Language 10/36



C1 is standard—but how do we implement it?

C1 (informal)

If A ≈ B (isomorphic/equivalent), then content-allowed sentences should not distinguish A

from B.

• A natural attempt: weaken the language so that “junk” becomes inexpressible.

• Example: ETCS replaces primitive ∈ with structural primitives (objects/arrows).

But: C1 is not automatic

Even without ∈, primitive equality + naming can reintroduce haecceity. So we still

need a principled boundary for “content-allowed” language.

Section 3/8: Structuralism as a Constraint on Language 11/36



C1 is standard—but how do we implement it?

C1 (informal)

If A ≈ B (isomorphic/equivalent), then content-allowed sentences should not distinguish A

from B.

• A natural attempt: weaken the language so that “junk” becomes inexpressible.

• Example: ETCS replaces primitive ∈ with structural primitives (objects/arrows).

But: C1 is not automatic

Even without ∈, primitive equality + naming can reintroduce haecceity. So we still

need a principled boundary for “content-allowed” language.

Section 3/8: Structuralism as a Constraint on Language 11/36



C1 is standard—but how do we implement it?

C1 (informal)

If A ≈ B (isomorphic/equivalent), then content-allowed sentences should not distinguish A

from B.

• A natural attempt: weaken the language so that “junk” becomes inexpressible.

• Example: ETCS replaces primitive ∈ with structural primitives (objects/arrows).

But: C1 is not automatic

Even without ∈, primitive equality + naming can reintroduce haecceity. So we still

need a principled boundary for “content-allowed” language.

Section 3/8: Structuralism as a Constraint on Language 11/36



ETCS-style haecceity: “representative-picking” without ∈

Setup (purely categorical vocabulary)

Let A,B be objects with an isomorphism e : A ∼= B.

Assume we have a named arrow (a global element) o : 1 → A.

A haecceitistic formula

Let cod : Arr → Obj be “codomain”. Define

φ(x) ≡ cod(o) = x .

• Then φ(A) holds by construction (since cod(o) = A).

• But φ(B) is not forced by A ∼= B: in many models where A ̸= B (strict

object-identity), φ(B) fails.

Point

So “no ∈” does not by itself block representative-picking. The culprit is primitive

object-equality combined with names.

Section 3/8: Structuralism as a Constraint on Language 12/36



ETCS-style haecceity: “representative-picking” without ∈

Setup (purely categorical vocabulary)

Let A,B be objects with an isomorphism e : A ∼= B.

Assume we have a named arrow (a global element) o : 1 → A.

A haecceitistic formula

Let cod : Arr → Obj be “codomain”. Define

φ(x) ≡ cod(o) = x .

• Then φ(A) holds by construction (since cod(o) = A).

• But φ(B) is not forced by A ∼= B: in many models where A ̸= B (strict

object-identity), φ(B) fails.

Point

So “no ∈” does not by itself block representative-picking. The culprit is primitive

object-equality combined with names.

Section 3/8: Structuralism as a Constraint on Language 12/36



ETCS-style haecceity: “representative-picking” without ∈

Setup (purely categorical vocabulary)

Let A,B be objects with an isomorphism e : A ∼= B.

Assume we have a named arrow (a global element) o : 1 → A.

A haecceitistic formula

Let cod : Arr → Obj be “codomain”. Define

φ(x) ≡ cod(o) = x .

• Then φ(A) holds by construction (since cod(o) = A).

• But φ(B) is not forced by A ∼= B: in many models where A ̸= B (strict

object-identity), φ(B) fails.

Point

So “no ∈” does not by itself block representative-picking. The culprit is primitive

object-equality combined with names.

Section 3/8: Structuralism as a Constraint on Language 12/36



ETCS-style haecceity: “representative-picking” without ∈

Setup (purely categorical vocabulary)

Let A,B be objects with an isomorphism e : A ∼= B.

Assume we have a named arrow (a global element) o : 1 → A.

A haecceitistic formula

Let cod : Arr → Obj be “codomain”. Define

φ(x) ≡ cod(o) = x .

• Then φ(A) holds by construction (since cod(o) = A).

• But φ(B) is not forced by A ∼= B: in many models where A ̸= B (strict

object-identity), φ(B) fails.

Point

So “no ∈” does not by itself block representative-picking. The culprit is primitive

object-equality combined with names.Section 3/8: Structuralism as a Constraint on Language 12/36



Transition: from ETCS to identity-sensitive language design

• ETCS can weaken one major junk-generator (∈), but haecceity can re-enter.

• Diagnosis: if your foundational language lets you write “this object is that very

object”, C1 will be fragile.

• So a more radical design move suggests itself:

• Restrict (or reconstruct) object-identity in the language, rather than taking it as

primitive.

Next

This motivates treating structuralism as explicit constraints (C1/C2), and then

asking what kind of language can actually realise them.

Section 3/8: Structuralism as a Constraint on Language 13/36



Transition: from ETCS to identity-sensitive language design

• ETCS can weaken one major junk-generator (∈), but haecceity can re-enter.

• Diagnosis: if your foundational language lets you write “this object is that very

object”, C1 will be fragile.

• So a more radical design move suggests itself:

• Restrict (or reconstruct) object-identity in the language, rather than taking it as

primitive.

Next

This motivates treating structuralism as explicit constraints (C1/C2), and then

asking what kind of language can actually realise them.

Section 3/8: Structuralism as a Constraint on Language 13/36



Transition: from ETCS to identity-sensitive language design

• ETCS can weaken one major junk-generator (∈), but haecceity can re-enter.

• Diagnosis: if your foundational language lets you write “this object is that very

object”, C1 will be fragile.

• So a more radical design move suggests itself:

• Restrict (or reconstruct) object-identity in the language, rather than taking it as

primitive.

Next

This motivates treating structuralism as explicit constraints (C1/C2), and then

asking what kind of language can actually realise them.

Section 3/8: Structuralism as a Constraint on Language 13/36



Transition: from ETCS to identity-sensitive language design

• ETCS can weaken one major junk-generator (∈), but haecceity can re-enter.

• Diagnosis: if your foundational language lets you write “this object is that very

object”, C1 will be fragile.

• So a more radical design move suggests itself:

• Restrict (or reconstruct) object-identity in the language, rather than taking it as

primitive.

Next

This motivates treating structuralism as explicit constraints (C1/C2), and then

asking what kind of language can actually realise them.

Section 3/8: Structuralism as a Constraint on Language 13/36



4. Structuralist Language: Two Constraints

Section 4/8



Outline

1. Motivation: A Tale of Two Naturals

2. What Numbers Could Not Be?

3. Structuralism as a Constraint on Language

4. Structuralist Language: Two Constraints

5. The Univalent Foundations

6. Univalence Axiom

7. HoTT as Structuralist Heaven?

8. Conclusions

Section 4/8: Structuralist Language: Two Constraints 14/36



Two constraints on a structuralist foundation

C1: Content invariance

Fix a notion of structural sameness ≈
(iso/equiv/. . . ).

Content-allowed statements should not

distinguish x ≈ y .

x ≈ y ⇒ (φ(x) ↔ φ(y))

C2: Canonical transfer

Not only truth, but constructions must

move: definitions, lemmas, witnesses, proofs.

TrP : (X ≈ Y )× P(X ) → P(Y )

Key contrast

C1 is about truth-values.

C2 is about reuse and stability of reasoning.

Section 4/8: Structuralist Language: Two Constraints 15/36



Two constraints on a structuralist foundation

C1: Content invariance

Fix a notion of structural sameness ≈
(iso/equiv/. . . ).

Content-allowed statements should not

distinguish x ≈ y .

x ≈ y ⇒ (φ(x) ↔ φ(y))

C2: Canonical transfer

Not only truth, but constructions must

move: definitions, lemmas, witnesses, proofs.

TrP : (X ≈ Y )× P(X ) → P(Y )

Key contrast

C1 is about truth-values.

C2 is about reuse and stability of reasoning.

Section 4/8: Structuralist Language: Two Constraints 15/36



C2 is not “same proof script” (a precise reading)

What C2 does not say

It does not demand that the same syntactic proof text works across presentations.

What C2 does say

Given evidence e : X ≈ Y , there should be a canonical and coherent transport of

structure/content across e.

fY := e ◦ fX ◦ e−1 RY (y⃗) :⇐⇒ RX (e
−1(y⃗)).

Heuristic

C2 is a rule for moving meaning and constructions, not a demand for textual

reuse.

Section 4/8: Structuralist Language: Two Constraints 16/36



C2 is not “same proof script” (a precise reading)

What C2 does not say

It does not demand that the same syntactic proof text works across presentations.

What C2 does say

Given evidence e : X ≈ Y , there should be a canonical and coherent transport of

structure/content across e.

fY := e ◦ fX ◦ e−1 RY (y⃗) :⇐⇒ RX (e
−1(y⃗)).

Heuristic

C2 is a rule for moving meaning and constructions, not a demand for textual

reuse.

Section 4/8: Structuralist Language: Two Constraints 16/36



C2 is not “same proof script” (a precise reading)

What C2 does not say

It does not demand that the same syntactic proof text works across presentations.

What C2 does say

Given evidence e : X ≈ Y , there should be a canonical and coherent transport of

structure/content across e.

fY := e ◦ fX ◦ e−1 RY (y⃗) :⇐⇒ RX (e
−1(y⃗)).

Heuristic

C2 is a rule for moving meaning and constructions, not a demand for textual

reuse.

Section 4/8: Structuralist Language: Two Constraints 16/36



C2 as a design spec + practice-based criteria

Methodological stance

C2 is not a metaphysical conclusion of structuralism. It is a specification for a foundational

language meant to support structural practice.

• Practice criterion 1 (“up to isomorphism”):

Mathematicians routinely treat isomorphic presentations as interchangeable. That

norm implicitly presupposes robust transfer of constructions.

• Practice criterion 2 (large-scale formalization / social practice):

If we want reusable libraries and collaborative formalization, non-canonical

transfer becomes a scalability bottleneck.

Up-shot

So C2 is justified as a language-engineering requirement whose success is

measured against mathematical practice.

Section 4/8: Structuralist Language: Two Constraints 17/36



C2 as a design spec + practice-based criteria

Methodological stance

C2 is not a metaphysical conclusion of structuralism. It is a specification for a foundational

language meant to support structural practice.

• Practice criterion 1 (“up to isomorphism”):

Mathematicians routinely treat isomorphic presentations as interchangeable. That

norm implicitly presupposes robust transfer of constructions.

• Practice criterion 2 (large-scale formalization / social practice):

If we want reusable libraries and collaborative formalization, non-canonical

transfer becomes a scalability bottleneck.

Up-shot

So C2 is justified as a language-engineering requirement whose success is

measured against mathematical practice.

Section 4/8: Structuralist Language: Two Constraints 17/36



C2 as a design spec + practice-based criteria

Methodological stance

C2 is not a metaphysical conclusion of structuralism. It is a specification for a foundational

language meant to support structural practice.

• Practice criterion 1 (“up to isomorphism”):

Mathematicians routinely treat isomorphic presentations as interchangeable. That

norm implicitly presupposes robust transfer of constructions.

• Practice criterion 2 (large-scale formalization / social practice):

If we want reusable libraries and collaborative formalization, non-canonical

transfer becomes a scalability bottleneck.

Up-shot

So C2 is justified as a language-engineering requirement whose success is

measured against mathematical practice.

Section 4/8: Structuralist Language: Two Constraints 17/36



C2 as a design spec + practice-based criteria

Methodological stance

C2 is not a metaphysical conclusion of structuralism. It is a specification for a foundational

language meant to support structural practice.

• Practice criterion 1 (“up to isomorphism”):

Mathematicians routinely treat isomorphic presentations as interchangeable. That

norm implicitly presupposes robust transfer of constructions.

• Practice criterion 2 (large-scale formalization / social practice):

If we want reusable libraries and collaborative formalization, non-canonical

transfer becomes a scalability bottleneck.

Up-shot

So C2 is justified as a language-engineering requirement whose success is

measured against mathematical practice.

Section 4/8: Structuralist Language: Two Constraints 17/36



C2 in everyday mathematics (one intuition)

A familiar pattern

Same object, different presentation ⇒ we expect a canonical rule to move data/proofs

across presentations.

• Linear algebra: change of basis changes notation, but comes with a canonical

transformation.

• Graphs: relabeling changes names, but an isomorphism canonically transports

witnesses.

What C2 demands

Transfer must not be merely possible; it should be canonical and coherent.

Section 4/8: Structuralist Language: Two Constraints 18/36



C2 in everyday mathematics (one intuition)

A familiar pattern

Same object, different presentation ⇒ we expect a canonical rule to move data/proofs

across presentations.

• Linear algebra: change of basis changes notation, but comes with a canonical

transformation.

• Graphs: relabeling changes names, but an isomorphism canonically transports

witnesses.

What C2 demands

Transfer must not be merely possible; it should be canonical and coherent.

Section 4/8: Structuralist Language: Two Constraints 18/36



C2 in everyday mathematics (one intuition)

A familiar pattern

Same object, different presentation ⇒ we expect a canonical rule to move data/proofs

across presentations.

• Linear algebra: change of basis changes notation, but comes with a canonical

transformation.

• Graphs: relabeling changes names, but an isomorphism canonically transports

witnesses.

What C2 demands

Transfer must not be merely possible; it should be canonical and coherent.

Section 4/8: Structuralist Language: Two Constraints 18/36



5. The Univalent Foundations

Section 5/8



Outline

1. Motivation: A Tale of Two Naturals

2. What Numbers Could Not Be?

3. Structuralism as a Constraint on Language

4. Structuralist Language: Two Constraints

5. The Univalent Foundations

6. Univalence Axiom

7. HoTT as Structuralist Heaven?

8. Conclusions

Section 5/8: The Univalent Foundations 19/36



HoTT/UF: what is the package?

Two layers

• Syntax (MLTT): dependent types + identity types (x = y).

• Semantics (homotopy): interpret types as spaces / ∞-groupoids.

Why it matters for us

In HoTT/UF, equality is structured (not just a truth-value), and it comes with a

built-in mechanism for transport.

• This is exactly the kind of mechanism C2 was asking for.

• Univalence then extends it from (=) to (≈).

Section 5/8: The Univalent Foundations 20/36



HoTT/UF: what is the package?

Two layers

• Syntax (MLTT): dependent types + identity types (x = y).

• Semantics (homotopy): interpret types as spaces / ∞-groupoids.

Why it matters for us

In HoTT/UF, equality is structured (not just a truth-value), and it comes with a

built-in mechanism for transport.

• This is exactly the kind of mechanism C2 was asking for.

• Univalence then extends it from (=) to (≈).

Section 5/8: The Univalent Foundations 20/36



The ∞-groupoid viewpoint (one diagram, one moral)

Reading a type A

• terms a : A are points

• proofs p : a = b are paths

• proofs α : p = q are homotopies (paths

between paths)

• and so on ⇒ higher equalities

a b

p

q

α

Moral for structuralism

“Sameness” is not a bare predicate: it has internal coherence data. This is why

HoTT/UF is a natural habitat for C2-style constraints.

Section 5/8: The Univalent Foundations 21/36



The ∞-groupoid viewpoint (one diagram, one moral)

Reading a type A

• terms a : A are points

• proofs p : a = b are paths

• proofs α : p = q are homotopies (paths

between paths)

• and so on ⇒ higher equalities

a b

p

q

α

Moral for structuralism

“Sameness” is not a bare predicate: it has internal coherence data. This is why

HoTT/UF is a natural habitat for C2-style constraints.

Section 5/8: The Univalent Foundations 21/36



Identity types: equality as an object you can use

Identity type (informal)

For a, b : A, the type (a = b) is the type of identifications of a and b. A term p : a = b is a

witness of equality.

• This makes equality first-class: you can quantify over it and compute with it.

• Higher equalities (p = q) are also internal objects, enabling coherence control.

Why we care

C2 needs evidence-sensitive transfer. In HoTT, such evidence is literally p : a = b.

Section 5/8: The Univalent Foundations 22/36



Identity types: equality as an object you can use

Identity type (informal)

For a, b : A, the type (a = b) is the type of identifications of a and b. A term p : a = b is a

witness of equality.

• This makes equality first-class: you can quantify over it and compute with it.

• Higher equalities (p = q) are also internal objects, enabling coherence control.

Why we care

C2 needs evidence-sensitive transfer. In HoTT, such evidence is literally p : a = b.

Section 5/8: The Univalent Foundations 22/36



Identity types: equality as an object you can use

Identity type (informal)

For a, b : A, the type (a = b) is the type of identifications of a and b. A term p : a = b is a

witness of equality.

• This makes equality first-class: you can quantify over it and compute with it.

• Higher equalities (p = q) are also internal objects, enabling coherence control.

Why we care

C2 needs evidence-sensitive transfer. In HoTT, such evidence is literally p : a = b.

Section 5/8: The Univalent Foundations 22/36



Path induction (J): the core rule for reasoning about identity

Path induction (informal statement)

To prove something about an arbitrary p : x = y , it suffices to prove it in the case

p ≡ reflx : x = x .

Schematic form

Given a family C :
∏

x,y :A(x = y) → U ,
if you have c :

∏
x :A C (x , x , reflx), then you get

J(c) :
∏
x,y :A

∏
p:x=y

C (x , y , p).

Punchline

This is what makes transport canonical and coherent (no ad hoc choices).

Section 5/8: The Univalent Foundations 23/36



Path induction (J): the core rule for reasoning about identity

Path induction (informal statement)

To prove something about an arbitrary p : x = y , it suffices to prove it in the case

p ≡ reflx : x = x .

Schematic form

Given a family C :
∏

x,y :A(x = y) → U ,
if you have c :

∏
x :A C (x , x , reflx), then you get

J(c) :
∏
x,y :A

∏
p:x=y

C (x , y , p).

Punchline

This is what makes transport canonical and coherent (no ad hoc choices).

Section 5/8: The Univalent Foundations 23/36



Path induction (J): the core rule for reasoning about identity

Path induction (informal statement)

To prove something about an arbitrary p : x = y , it suffices to prove it in the case

p ≡ reflx : x = x .

Schematic form

Given a family C :
∏

x,y :A(x = y) → U ,
if you have c :

∏
x :A C (x , x , reflx), then you get

J(c) :
∏
x,y :A

∏
p:x=y

C (x , y , p).

Punchline

This is what makes transport canonical and coherent (no ad hoc choices).

Section 5/8: The Univalent Foundations 23/36



Transport: C2 for definable families comes “for free”

Transport (key construction)

Let P : A → U and p : x = y . Then there is a canonical map

transportP(p,−) : P(x) → P(y).

• transportP(reflx ,−) is judgmentally the identity.

• Transport respects composition of paths ⇒ coherence “built-in”.

Connection to our constraints

For (=), HoTT already implements the core of C2: canonical transfer.

Section 5/8: The Univalent Foundations 24/36



Transport: C2 for definable families comes “for free”

Transport (key construction)

Let P : A → U and p : x = y . Then there is a canonical map

transportP(p,−) : P(x) → P(y).

• transportP(reflx ,−) is judgmentally the identity.

• Transport respects composition of paths ⇒ coherence “built-in”.

Connection to our constraints

For (=), HoTT already implements the core of C2: canonical transfer.

Section 5/8: The Univalent Foundations 24/36



Transport: C2 for definable families comes “for free”

Transport (key construction)

Let P : A → U and p : x = y . Then there is a canonical map

transportP(p,−) : P(x) → P(y).

• transportP(reflx ,−) is judgmentally the identity.

• Transport respects composition of paths ⇒ coherence “built-in”.

Connection to our constraints

For (=), HoTT already implements the core of C2: canonical transfer.

Section 5/8: The Univalent Foundations 24/36



6. Univalence Axiom

Section 6/8



Outline

1. Motivation: A Tale of Two Naturals

2. What Numbers Could Not Be?

3. Structuralism as a Constraint on Language

4. Structuralist Language: Two Constraints

5. The Univalent Foundations

6. Univalence Axiom

7. HoTT as Structuralist Heaven?

8. Conclusions

Section 6/8: Univalence Axiom 25/36



The gap: we need transport along ≈, not only along =

• Structuralism works with a notion of sameness ≈ (iso/equiv/. . . ).

• But HoTT’s built-in transport is along identity (=).

• So: how do we get canonical transport along equivalence?

This is exactly what Univalence provides

It turns equivalence into a source of identity.

Section 6/8: Univalence Axiom 26/36



The gap: we need transport along ≈, not only along =

• Structuralism works with a notion of sameness ≈ (iso/equiv/. . . ).

• But HoTT’s built-in transport is along identity (=).

• So: how do we get canonical transport along equivalence?

This is exactly what Univalence provides

It turns equivalence into a source of identity.

Section 6/8: Univalence Axiom 26/36



The gap: we need transport along ≈, not only along =

• Structuralism works with a notion of sameness ≈ (iso/equiv/. . . ).

• But HoTT’s built-in transport is along identity (=).

• So: how do we get canonical transport along equivalence?

This is exactly what Univalence provides

It turns equivalence into a source of identity.

Section 6/8: Univalence Axiom 26/36



Univalence (statement)

Univalence (slogan)

For types A,B : U , identity is equivalent to equivalence:

(A = B) ≃ (A ≃ B).

• A term p : A = B gives an equivalence (by transport).

• Univalence adds (roughly) the converse: an equivalence gives a path.

Structuralist reading

Univalence internalizes the principle: “equivalent structures count as equal”.

Section 6/8: Univalence Axiom 27/36



Univalence (statement)

Univalence (slogan)

For types A,B : U , identity is equivalent to equivalence:

(A = B) ≃ (A ≃ B).

• A term p : A = B gives an equivalence (by transport).

• Univalence adds (roughly) the converse: an equivalence gives a path.

Structuralist reading

Univalence internalizes the principle: “equivalent structures count as equal”.

Section 6/8: Univalence Axiom 27/36



Univalence (statement)

Univalence (slogan)

For types A,B : U , identity is equivalent to equivalence:

(A = B) ≃ (A ≃ B).

• A term p : A = B gives an equivalence (by transport).

• Univalence adds (roughly) the converse: an equivalence gives a path.

Structuralist reading

Univalence internalizes the principle: “equivalent structures count as equal”.

Section 6/8: Univalence Axiom 27/36



Univalence ⇒ transport along equivalence (the C2 engine for ≈)

From equivalence to transport

Assume e : A ≃ B. By univalence, obtain a path p : A = B. Then for any P : U → V we get

TrP(e,−) := transportP(p,−) : P(A) → P(B).

• Canonical: depends only on e via p (no extra choices).

• Coherent: inherits coherence laws from path induction.

This matches C2 as we defined it

Evidence-sensitive, canonical, coherent transfer under ≈.

Section 6/8: Univalence Axiom 28/36



Univalence ⇒ transport along equivalence (the C2 engine for ≈)

From equivalence to transport

Assume e : A ≃ B. By univalence, obtain a path p : A = B. Then for any P : U → V we get

TrP(e,−) := transportP(p,−) : P(A) → P(B).

• Canonical: depends only on e via p (no extra choices).

• Coherent: inherits coherence laws from path induction.

This matches C2 as we defined it

Evidence-sensitive, canonical, coherent transfer under ≈.

Section 6/8: Univalence Axiom 28/36



Univalence ⇒ transport along equivalence (the C2 engine for ≈)

From equivalence to transport

Assume e : A ≃ B. By univalence, obtain a path p : A = B. Then for any P : U → V we get

TrP(e,−) := transportP(p,−) : P(A) → P(B).

• Canonical: depends only on e via p (no extra choices).

• Coherent: inherits coherence laws from path induction.

This matches C2 as we defined it

Evidence-sensitive, canonical, coherent transfer under ≈.

Section 6/8: Univalence Axiom 28/36



C1 and C2 become internal lemmas (clean payoff)

Lemma-form C2

For any P : U → V,

e : A ≃ B ⇒ TrP(e,−) : P(A) → P(B).

• “Reuse” becomes definable transport.

• Coherence is inherited (not bolted

on).

Lemma-form C1

For any P : U → Prop,

e : A ≃ B ⇒ (P(A) ↔ P(B)).

• Content invariance follows from

transport.

• “Up to equivalence” is built into

meaning.

Why HoTT/UF?

Because it is a foundational language where the structuralist constraints (C1

invariance, C2 canonical transfer) are implemented, not merely postulated.

Section 6/8: Univalence Axiom 29/36



C1 and C2 become internal lemmas (clean payoff)

Lemma-form C2

For any P : U → V,

e : A ≃ B ⇒ TrP(e,−) : P(A) → P(B).

• “Reuse” becomes definable transport.

• Coherence is inherited (not bolted

on).

Lemma-form C1

For any P : U → Prop,

e : A ≃ B ⇒ (P(A) ↔ P(B)).

• Content invariance follows from

transport.

• “Up to equivalence” is built into

meaning.

Why HoTT/UF?

Because it is a foundational language where the structuralist constraints (C1

invariance, C2 canonical transfer) are implemented, not merely postulated.

Section 6/8: Univalence Axiom 29/36



7. HoTT as Structuralist Heaven?

Section 7/8



Outline

1. Motivation: A Tale of Two Naturals

2. What Numbers Could Not Be?

3. Structuralism as a Constraint on Language

4. Structuralist Language: Two Constraints

5. The Univalent Foundations

6. Univalence Axiom

7. HoTT as Structuralist Heaven?

8. Conclusions

Section 7/8: HoTT as Structuralist Heaven? 30/36



What HoTT/UF delivers (and what it does not)

What we gained

• A built-in notion of evidence-sensitive, coherent transport (via identity).

• Univalence: equivalence becomes a source of transport ⇒ C1/C2 internalized.

But “implementation” ̸= “automatic eraser”

UF provides a principled mechanism, not a guarantee that all practical burdens

disappear.

Section 7/8: HoTT as Structuralist Heaven? 31/36



What HoTT/UF delivers (and what it does not)

What we gained

• A built-in notion of evidence-sensitive, coherent transport (via identity).

• Univalence: equivalence becomes a source of transport ⇒ C1/C2 internalized.

But “implementation” ̸= “automatic eraser”

UF provides a principled mechanism, not a guarantee that all practical burdens

disappear.

Section 7/8: HoTT as Structuralist Heaven? 31/36



Limitation 1: propositional vs definitional equality

The gap

Univalence typically yields propositional equality (paths), while rewriting/computation in

proof assistants often relies on definitional equality.

• You can transport along equivalences, but it may not compute “by definition”.

• So reuse is principled, yet automation can still require work (rewriting steps,

lemmas).

Up-shot

HoTT/UF improves the theory of reuse; engineering smoothness is an additional

layer.

Section 7/8: HoTT as Structuralist Heaven? 32/36



Limitation 1: propositional vs definitional equality

The gap

Univalence typically yields propositional equality (paths), while rewriting/computation in

proof assistants often relies on definitional equality.

• You can transport along equivalences, but it may not compute “by definition”.

• So reuse is principled, yet automation can still require work (rewriting steps,

lemmas).

Up-shot

HoTT/UF improves the theory of reuse; engineering smoothness is an additional

layer.

Section 7/8: HoTT as Structuralist Heaven? 32/36



Limitation 1: propositional vs definitional equality

The gap

Univalence typically yields propositional equality (paths), while rewriting/computation in

proof assistants often relies on definitional equality.

• You can transport along equivalences, but it may not compute “by definition”.

• So reuse is principled, yet automation can still require work (rewriting steps,

lemmas).

Up-shot

HoTT/UF improves the theory of reuse; engineering smoothness is an additional

layer.

Section 7/8: HoTT as Structuralist Heaven? 32/36



Limitation 2: the content-boundary problem remains

C1 is still a design choice

Even in HoTT/UF, “what counts as structural content” depends on:

• which sameness notion you adopt (equivalence, iso in a structure, etc.)

• which predicates you allow (Prop vs Type, truncation levels, etc.)

No free lunch

UF does not delete all junk automatically; it gives a cleaner workshop to articulate

and enforce content constraints.

Section 7/8: HoTT as Structuralist Heaven? 33/36



Limitation 2: the content-boundary problem remains

C1 is still a design choice

Even in HoTT/UF, “what counts as structural content” depends on:

• which sameness notion you adopt (equivalence, iso in a structure, etc.)

• which predicates you allow (Prop vs Type, truncation levels, etc.)

No free lunch

UF does not delete all junk automatically; it gives a cleaner workshop to articulate

and enforce content constraints.

Section 7/8: HoTT as Structuralist Heaven? 33/36



Limitation 3: “canonical” comes in strengths

Canonical transfer is not one thing

There are different targets:

• Existence of transport (weak)

• Chosen transport (constructive/canonical as a function)

• Computational transport (strong: good definitional behavior)

• HoTT gives coherence robustly; computation friendliness can still be subtle.

• So C2-as-spec often splits into: coherence vs computation.

Take-away

UF is a major step, but “structuralist heaven” is an overstatement.

Section 7/8: HoTT as Structuralist Heaven? 34/36



Limitation 3: “canonical” comes in strengths

Canonical transfer is not one thing

There are different targets:

• Existence of transport (weak)

• Chosen transport (constructive/canonical as a function)

• Computational transport (strong: good definitional behavior)

• HoTT gives coherence robustly; computation friendliness can still be subtle.

• So C2-as-spec often splits into: coherence vs computation.

Take-away

UF is a major step, but “structuralist heaven” is an overstatement.

Section 7/8: HoTT as Structuralist Heaven? 34/36



Limitation 3: “canonical” comes in strengths

Canonical transfer is not one thing

There are different targets:

• Existence of transport (weak)

• Chosen transport (constructive/canonical as a function)

• Computational transport (strong: good definitional behavior)

• HoTT gives coherence robustly; computation friendliness can still be subtle.

• So C2-as-spec often splits into: coherence vs computation.

Take-away

UF is a major step, but “structuralist heaven” is an overstatement.

Section 7/8: HoTT as Structuralist Heaven? 34/36



8. Conclusions

Section 8/8



Outline

1. Motivation: A Tale of Two Naturals

2. What Numbers Could Not Be?

3. Structuralism as a Constraint on Language

4. Structuralist Language: Two Constraints

5. The Univalent Foundations

6. Univalence Axiom

7. HoTT as Structuralist Heaven?

8. Conclusions

Section 8/8: Conclusions 35/36



Conclusions

• Proof assistants expose a genuine tension: same mathematics, no direct reuse

(representation sensitivity).

• Benacerraf + Junk motivates reading structuralism as a constraint on

foundational language (not ontology first).

• Structuralist constraints split into:

• C1: invariance of content under ≈
• C2: canonical, coherent transfer under ≈

• HoTT/UF provides an implementation path: identity ⇒ transport, univalence

⇒ transport along equivalence.

Modest conclusion

UF does not finish structuralism; it turns structuralist constraints into executable

design principles, while leaving further design choices open.

Section 8/8: Conclusions 36/36



Conclusions

• Proof assistants expose a genuine tension: same mathematics, no direct reuse

(representation sensitivity).

• Benacerraf + Junk motivates reading structuralism as a constraint on

foundational language (not ontology first).

• Structuralist constraints split into:

• C1: invariance of content under ≈
• C2: canonical, coherent transfer under ≈

• HoTT/UF provides an implementation path: identity ⇒ transport, univalence

⇒ transport along equivalence.

Modest conclusion

UF does not finish structuralism; it turns structuralist constraints into executable

design principles, while leaving further design choices open.

Section 8/8: Conclusions 36/36



Conclusions

• Proof assistants expose a genuine tension: same mathematics, no direct reuse

(representation sensitivity).

• Benacerraf + Junk motivates reading structuralism as a constraint on

foundational language (not ontology first).

• Structuralist constraints split into:

• C1: invariance of content under ≈
• C2: canonical, coherent transfer under ≈

• HoTT/UF provides an implementation path: identity ⇒ transport, univalence

⇒ transport along equivalence.

Modest conclusion

UF does not finish structuralism; it turns structuralist constraints into executable

design principles, while leaving further design choices open.

Section 8/8: Conclusions 36/36



Conclusions

• Proof assistants expose a genuine tension: same mathematics, no direct reuse

(representation sensitivity).

• Benacerraf + Junk motivates reading structuralism as a constraint on

foundational language (not ontology first).

• Structuralist constraints split into:

• C1: invariance of content under ≈
• C2: canonical, coherent transfer under ≈

• HoTT/UF provides an implementation path: identity ⇒ transport, univalence

⇒ transport along equivalence.

Modest conclusion

UF does not finish structuralism; it turns structuralist constraints into executable

design principles, while leaving further design choices open.

Section 8/8: Conclusions 36/36



Conclusions

• Proof assistants expose a genuine tension: same mathematics, no direct reuse

(representation sensitivity).

• Benacerraf + Junk motivates reading structuralism as a constraint on

foundational language (not ontology first).

• Structuralist constraints split into:

• C1: invariance of content under ≈
• C2: canonical, coherent transfer under ≈

• HoTT/UF provides an implementation path: identity ⇒ transport, univalence

⇒ transport along equivalence.

Modest conclusion

UF does not finish structuralism; it turns structuralist constraints into executable

design principles, while leaving further design choices open.

Section 8/8: Conclusions 36/36



Thank you.

mail@mincheolseo.com

Section 8/8: Conclusions 36/36


	Motivation: A Tale of Two Naturals
	What Numbers Could Not Be?
	Structuralism as a Constraint on Language
	Structuralist Language: Two Constraints
	The Univalent Foundations
	Univalence Axiom
	HoTT as Structuralist Heaven?
	Conclusions

