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Definitions
stable independence relation

Definition 1

There are 2 different approaches to stability in metric structures.

We say T is λ-stable with respect to the discrete metric if
everyM |= T and every A ⊆ M of cardinality ≤ λ, the set
S1(TA) has cardinality ≤ λ.
We say that T is stable with respect to the discrete metric if
T is λ-stable with respect to the discrete metric for some λ.
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Definition 2 due to Iovino

We say that T is λ-stable if for everyM |= T and A ⊆ M of
cardinality ≤ λ, there is a subset of S1(TA) of cardinality
≤ λ that is dense in S1(TA) with respect to d-metric.
We say that T is stable if T is λ-stable for some λ.

Fact A theory T is stable iff T is stable with respect to the
discrete metric.
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LetM be a κ-universal domain for T and let A,B,C be small
subsets of M. A ternary relation |̂ is called a stable
independence relation if it satisfies the following:

1 Invariance under automorphisms ofM.
2 Symmetry: A |̂ CB ⇐⇒ B |̂ CA.
3 Transitivity: A |̂ C(B ∪D) if and only if A |̂ CB and A |̂ B∪CD.
4 Finite character: A |̂ CB if and only if a |̂ CB for all finite

tuples a from A.
5 Extension: for all A,B,C, there is A′ such that A′ |̂ CB and

tp(A/C) = tp(A′/C).
6 Local character: for every finite tuple a, there is B′ ⊆ B of

cardinality ≤ |T | such that a |̂ B′B.
7 Stationarity of types: if tp(A/M) = tp(A′/M), A |̂ MB, and

A′ |̂ MB, then we have tp(A/B ∪M) = tp(A′/B ∪M).
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Theorem (BBHU)
LetM be a κ-universal domain for T . If T is stable, then there
is precisely one stable independence relation onM. Moreover,
if there exists a stable independence relation |̂∗ on triples of
small subsets of M, then T is stable.
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Examples

The theory of infinite dimensional Hilbert space is ω-stable,
and the stable independence relation is orthogonality.
The theory of atomless probability algebras is ω-stable,
and the stable independence relation is probabilistic
independence. (coming soon!)
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Homogeneity and saturation
The order property and NIP

Signature of probability algebras

The signature is LPr = {0,1,∩,∪, {, µ}, where
0,1 are constant symbols
∩,∪ are binary function symbols
{ is a unary function symbol
µ is a unary predicate symbol

Note that
{ and µ are 1-Lipschitz,
∩ and ∪ are 2-Lipschitz.
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Formulas

x ∩ y , (x{) ∪ z are terms;
µ(x4y),d(x , y), |µ(x)− µ(y)| are formulas;
supx supy d(x , y)−· 1, µ(0) are sentences;
supx supy (d(x , y)−· 1) = 0, µ(0) = 0 are closed conditions.
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Example

Let (X ,Σ, µ) be a probability space and I ⊂ Σ the µ-null
sets. Then B = Σ/I is called the probability measured
algebra.
Define d(a,b) = µ(a4b) for all a,b ∈ B.

Check M = (B,0,1,∩,∪, {, µ,d) is an LPr -structure.
Interpretation of functions and predicates is natural here.
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Axioms of probability algebras

Let Pr denote the LPr -theory consists of the following axioms:
1 boolean algebra axioms (next slides)
2 measure axioms

µ(0) = 0
µ(1) = 1
supx supy

∣∣µ(x∪y)+µ(x∩y)
2 − µ(x)+µ(y)

2

∣∣ = 0
i.e., ∀x∀yµ(x ∪ y) + µ(x ∩ y) = µ(x) + µ(y)

3 metric axiom: supx supy |d(x , y)− µ(x4y)| = 0,
i.e., ∀x∀y(d(x , y) = µ(x4y))
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Boolean algebra axioms

supx supy
(
d(x ∪ y , y ∪ x)

)
= 0

supx supy
(
d(x ∩ y , y ∩ x)

)
= 0

supx supy supz d
(
x ∪ (y ∪ z), (x ∪ y) ∪ z

)
= 0

supx supy supz d
(
x ∩ (y ∩ z), (x ∩ y) ∩ z

)
= 0

supx supy d
(
x ∪ (x ∩ y), x

)
= 0

supx supy d
(
x ∩ (x ∪ y), x

)
= 0

supx supy supz d
(
x ∪ (y ∩ z), (x ∪ y) ∩ (x ∪ z)

)
= 0

supx supy supz d
(
x ∩ (y ∪ z), (x ∩ y) ∪ (x ∩ z)

)
= 0

supx d(x ∪ x{,1) = 0
supx d(x ∩ x{,0) = 0
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Proposition (Berenstein and Henson)

M |= Pr iffM is isomorphic to a probability measured algebra
of a probability space.
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Atomless probability algebras

The theory APr is Pr together the following atomless axiom,

sup
x

inf
y
|µ(x ∩ y)− µ(x ∩ y{)| = 0

ThenM |= APr⇒M is atomless.
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Theorem (Ben Yaacov)
LetM be a model of APr. Then:

1 The theory APr is separably categorical and complete.
2 The universal part of APr is Pr, and APr is the model

companion of Pr.
3 The theory APr admits quantifier elimination.
4 Assume thatM is the probability structure associated to a

probability space (Ω,F , µ). Let C ⊆ M and let C be the
σ-algebra σ-generated by the events in C. For any two
n-tuples a,b ∈ Mn, we have tp(a/C) = tp(b/C) if and only
if P(aε11 ∩ · · · ∩ aεnn |C) = P(bε11 ∩ · · · ∩ bεnn |C) a.s. for all
ε1, · · · , εn ∈ {−1,1}.
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Theorem (Ben Yaacov)
LetM be a model of APr. Then, the theory APr is ω-stable and
its independence relation coincides with the probabilistic
independence relation. That is, if A,B,C are subsets of a
model of APr, then A |̂ CB iff

P
(
a ∩ b | σ(C)

)
= P

(
a | σ(C)

)
P
(
b | σ(C)

)
a.s.,

for all a ∈ σ(A) and b ∈ σ(B).
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Theorem (S.)

LetM |= APr and suppose thatM is associated to an atomless
probability space Ω. Then the following are equivalent:

1 M is strongly ||M||-homogeneous.
2 M is strongly ω-homogeneous.
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Hoover-Keisler Saturation

Let Ω and Γ be probability spaces and let X be a Polish
metric space. Let x , y : Γ→ X be random variables. The
probability space Ω is said to have the saturation
property for dist(x , y) if for every random variable
x ′ : Ω→ X with dist(x) = dist(x ′), there is a random
variable y ′ : Ω→ X such that dist(x , y) = dist(x ′, y ′).
A probability space Ω is said to be Hoover-Keisler
saturated if for all two random variables x , y : Γ→ X ,
where Γ is an arbitrary probability space and X is an
arbitrary Polish metric space, Ω has the saturation property
for dist(x , y).

17



Stability
Probability algebras

Random variable structures

Signature and structures
Pr and APr
Homogeneity and saturation
The order property and NIP

Hoover-Keisler Saturation

Let Ω and Γ be probability spaces and let X be a Polish
metric space. Let x , y : Γ→ X be random variables. The
probability space Ω is said to have the saturation
property for dist(x , y) if for every random variable
x ′ : Ω→ X with dist(x) = dist(x ′), there is a random
variable y ′ : Ω→ X such that dist(x , y) = dist(x ′, y ′).
A probability space Ω is said to be Hoover-Keisler
saturated if for all two random variables x , y : Γ→ X ,
where Γ is an arbitrary probability space and X is an
arbitrary Polish metric space, Ω has the saturation property
for dist(x , y).

17



Stability
Probability algebras

Random variable structures

Signature and structures
Pr and APr
Homogeneity and saturation
The order property and NIP

Hoover and Keisler’s work

Hoover and Keisler showed that many properties, such as
existence of solutions of stochastic integral equations,
regularity properties for distributions of correspondences, and
the existence of pure strategy equilibria in games with many
players, are not realized in the standard Lebesgue space, but
are realized in Hoover-Keisler saturated probability spaces.

Later, I will show that Hoover-Keisler saturated probability
spaces are ℵ1-saturated probability spaces.
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Theorem (S.)

LetM |= APr and suppose thatM is associated to an
atomless probability space Ω. For every infinite cardinal κ, the
following are equivalent:

1 M is κ-saturated.
2 Ω is κ-atomless.
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Corollary (S.)
A probability space Ω is atomless if and only if the probability
measured algebra of Ω is ℵ0-saturated.

Corollary (S.)
An atomless probability space is Hoover-Keisler saturated if
and only if it is ℵ1-saturated.
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In model theory, the theory of atomless boolean algebras
is among the wildest theories.
In continuous model theory, the theory of atomless
probability algebras is ω-stable.
The inclusion relation ⊂ gives the order property in
atomless boolean algebras.
Why ⊂ fails the order property in atomless probability
algebras?
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The order property

Let ϕ(x , y) be an formula with 2n free variables, and let
0 ≤ ε < 1

2 . Define the relation ≺ϕ,ε by

a ≺ϕ,ε b if ϕ(a,b) ≤ ε and ϕ(b,a) ≥ 1− ε,

where a,b ∈ Mn.
A ϕ-ε-chain of length k in M is a sequence of n-tuples of
length k , (ai)1≤i≤k , such that ai ≺ϕ,ε aj iff i < j .
A theory T has the order property if there exists a formula
ϕ(x , y) such that for every ε > 0, there existsM |= T such
thatM has arbitrarily long finite ϕ-ε-chains.
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APr does not have the order property

The formula x ⊂ y does not have the order property in
atomless probability algebras, because the probability measure
is finite, and thus ε-chain can not be arbitrarily long.
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NIP

(Shattering) Let X , Y be sets, f : X × Y → [0,1], r ∈ (0,1),
and ε > 0. Let A ⊆ X . We say that f (r , ε)-shatters A if for
every C ⊆ A, there exists some bC ∈ Y such that

{a ∈ X | f (a,bC) ≤ r} ∩ A = C,

and
{a ∈ X | f (a,bC) ≥ r + ε} ∩ A = A\C.

Let X , Y be sets and f : X × Y → [0,1]. We say that f is
(r , ε)-independent if for every n ∈ N, there exists A ⊆ X
where |A| > n and f (r , ε)-shatters A.
(NIP) We say that f is independent if there exists some
r ∈ (0,1) and ε > 0 such that f is (r , ε)-independent. We
say that f has NIP if f is not independent.
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A theory T has NIP if for every formula ϕ and for every model
M |= T , ϕM has NIP.
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LRV -structures

The signature is LRV = {0,1,¬, 1
2 ,−· , I}, where

0,1 are constant symbols
¬ and 1

2 are unary function symbols
−· is a binary funciton symbol
I is a unary predicate symbol.

Note that
¬ and I are 1-Lipschitz
1
2 is 1

2 -Lipschitz
−· is 2-Lipschitz.
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Example

Let M = L1([0,1], [0,1]
)
. For all f (x),g(x) ∈ M, we have

¬f (x) = 1− f (x)
1
2(f (x)) = f (x)/2
f (x)−· g(x) = max{f (x)− g(x),0}
I(f (x)) =

∫ 1
0 f (x)dx
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The theory of atomless random variable structures:
ARV

For a probability space (Ω,F , µ), the LRV-structure
M = (L1(µ, [0,1]),0,1,¬, 1

2 ,−· , I) is called a random
variable structure.
A probability space (Ω,F , µ) is atomless if for B ∈ F with
µ(B) > 0 there is A ∈ F such that A ⊂ B and
0 < µ(A) < µ(B).
Let ARV denote the theory of the class of all atomless
random variable structures:

{L1((Ω,F , µ), [0,1]
)
| Ω is atomless}
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Proposition (Ben Yaacov)

M |= ARV if and only if there is an atomless probability space
(Ω,F , µ) such thatM∼= L1(µ, [0,1]).
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Properties of ARV

Theorem (Ben Yaacov)
ARV is complete and separably categorical.
The universal part of ARV is RV and ARV is the model
companion of RV.
ARV admits quantifier elimination.
ARV is ω-stable and independence coinciding with
probabilistic independence.
Let A be a subset of a model of ARV. Then
tp(f/A) = tp(g/A) iff f and g have the same joint
conditional distributions over σ(A), the σ-algebra of
measurable sets generated by random variables in A.
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Theorem (Keisler)

IfM |= ARV is separable, thenM is not ℵ0-saturated.
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Theorem (S.)

LetM |= ARV. Suppose that M = L1(B, [0,1]) for some
B |= APr. ThenM |= ARV is κ-saturated if and only if B |= APr
is κ-saturated, for every uncountable cardinal κ.
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Proposition (S.)
The following are equivalent:

1 Ω is Hoover-Keisler saturated.
2 Ω is ℵ1-saturated.
3 L1(Ω, [0,1]) as a model of ARV is ℵ1-saturated.
4 L1(Ω, [0,1]) as a model of ARV is ℵ0-saturated.
5 For all elements a,b, c in a modelM of ARV with

tp(a) = tp(b), there exists d ∈ M such that
tp(a, c) = tp(b,d). (2-saturated)
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Conditional distributions

Let (Ω,B,m) be a probability space and A a probability
subalgebra of B. An L1((Ω,A,m), [0,1]

)
-valued Borel

probability measure µ on Rn is called a conditional
distribution over A if it satisfies:

1 µ(B) ≥ 0 a.s. for Borel B ⊆ Rn

2 µ(Rn) = 1 a.s.
3 µ(∪∞i=1Bi) =

∑∞
i=1 µ(Bi) a.s. for disjoint Borel

B1,B2, · · · ,⊆ Rn

Let DX (A) denote the space of all conditional distributions over
A which, as measures, are supported by X ⊆ Rn.
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An Example

Let f : Ω→ Rn. Then f determines a conditional distribution
over A, denoted dist(f | A). For Borel B ⊆ Rn,

dist(f | A)(B) := E(1{f∈B} | A).
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Correspondence

Theorem (Ben Yaacov)
Let f be an n-tuple in a model M of ARV and A be a subset of
M. Let A denote σ(A), the σ-algebra of measurable sets
generated by random variables in A. Then the joint conditional
distribution dist(f | A) only depends on tp(f/A). Moreover, the
mapping

ζ : Sn(A)→ D[0,1]n (A)

tp(f/A) 7→ dist(f | A)

is a homeomorphism between Sn(A) equipped with the logic
topology and D[0,1]n (A) equipped with the topology of weak
convergence.
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The formula for n = 1

Theorem (S.)

Let κ be an uncountable cardinal. Let M |= ARV be a
κ-saturated model of the form M = L1(m, [0,1]

)
, where

(Ω,F ,m) is an atomless probability space. Suppose C ⊆ M is
small. Let C be the σ-algebra of measurable sets generated by
random variables in C. For all a,b ∈ M,

d∗
(
tp(a/C), tp(b/C)

)
=

∫ 1

0

∥∥P(a > t |C)− P(b > t |C)
∥∥

1dt

where ‖ · ‖1 is the L1-norm.
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But for general n, the explicit formula is more complicated and
less elegant. I used results in optimal transport to give it.
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Wasserstein distances

Let (X ,d) be a Polish metric space, and let p ∈ [1,∞). For two
probability measures µ, ν on X , the Wasserstein distance of
order p between µ and ν is defined as follows:

Wp(µ, ν) = inf
{[

Ed(f ,g)p] 1
p | dist(f ) = µ,dist(g) = ν

}
,

where f ,g are two X -valued random variables.
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Wasserstein spaces

Let (X ,d) be a Polish metric space, and let p ∈ [1,∞). Then
the Wasserstein space of order p is defined as

Pp(X ) :=
{
µ ∈ D(X ) |

∫
X

d(x0, x)pµ(dx) < +∞ for some x0 ∈ X
}
,

where D(X ) is the space of all probability measures on X .
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Type spaces and Wasserstein spaces

Theorem (S.)

Suppose M = L1((Ω,F ,m), [0,1]
)
. Let f = (f1, · · · , fn) be an

n-tuple in a model M of ARV. Then f∗(m) is the pushforward
probability measure on [0,1]n. Moreover, the mapping

ηn : Sn(ARV)→ D
(
[0,1]n

)
tp(f ) 7→ f∗(m)

is an isometric isomorphism between
(
Sn(ARV),d∗

)
and(

D
(
[0,1]n

)
,W1

)
, where the metric on [0,1]n is defined as

d∗[0,1]n (c,d) =
∑n

i=1 |ci − di |, for c,d ∈ [0,1]n.
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Proposition

(Sn(ARV), logic topology) = (Sn(ARV), metric topology), i.e.,
two topologies coincide.

Proof.
By the fact that ARV is separably categorical and
Ryll-Nardzewski Theorem.

Remark
Here, the logic topology corresponds to the weak convergence
topology on D([0,1]n) and the metric topology corresponds to
the topology by the Wasserstein distance on D([0,1]n). This is
a special case, when X = [0,1]n, of a proposition in Villani’s
book “Optimal Transport: Old and New”.
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Given thatM |= ARV and f = (f1, · · · , fn) ∈ Mn. Let ARV(f )
denote Th(M, f ).

Proposition (S.)

(Sn
(
ARV(f )

)
, logic topology) = (Sn

(
ARV(f )

)
, metric topology)

if and only if f is discrete.

Remark
This is related to d-finite tuples in ARV; see my paper:
“On d-finite tuples in random variable structures”, Fund. Math.
221 (2013), 221–230.
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Thanks!!

Thanks for your attention!
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