Introduction to continuous logic Ultraproducts and type spaces

Shichang Song

Beijing Jiaotong University

14 January 2025

Let *I* be a nonempty set. A *filter* on *I* is a collection F of subsets of *I* satisfying:

• $\emptyset \notin F$ and $I \in F$.

3 $A, B \in F$ implies $A \cap B \in F$

③ $A \subseteq B \subseteq I$ and $A \in F$ implies $B \in F$.

Elements in *F* are "big" elements.

Let *I* be a nonempty set. A *filter* on *I* is a collection F of subsets of *I* satisfying:

- $\emptyset \notin F$ and $I \in F$.
- **2** $A, B \in F$ implies $A \cap B \in F$
- (i) $A \subseteq B \subseteq I$ and $A \in F$ implies $B \in F$.

Elements in *F* are "big" elements.

Let *I* be a nonempty set. A *filter* on *I* is a collection F of subsets of *I* satisfying:

- $\emptyset \notin F$ and $I \in F$.
- **2** $A, B \in F$ implies $A \cap B \in F$
- **3** $A \subseteq B \subseteq I$ and $A \in F$ implies $B \in F$.

Elements in *F* are "big" elements.

Let *I* be a nonempty set. A *filter* on *I* is a collection F of subsets of *I* satisfying:

- $\emptyset \notin F$ and $I \in F$.
- **2** $A, B \in F$ implies $A \cap B \in F$
- **3** $A \subseteq B \subseteq I$ and $A \in F$ implies $B \in F$.

Elements in *F* are "big" elements.

Let *I* be a nonempty set. A *filter* on *I* is a collection F of subsets of *I* satisfying:

- $\emptyset \notin F$ and $I \in F$.
- **2** $A, B \in F$ implies $A \cap B \in F$
- **3** $A \subseteq B \subseteq I$ and $A \in F$ implies $B \in F$.

Elements in *F* are "big" elements.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Example

- Let $I = \mathbb{N}$ and $F = \{A \mid |\mathbb{N} \setminus A| < \infty\}$. Then *F* is a *Frechét filter*. But, it's not an ultrafilter.
- Let a ∈ I and F = {A | a ∈ A}. Then F is an ultrafilter on I, called the *principal ultrafilter on I generated by a*.
- Principal ultrafilters are trivial.
- Fact Every filter on *I* is contained in an ultrafilter on *I*.
- Proof By Zorn's lemma.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Example

- Let $I = \mathbb{N}$ and $F = \{A \mid |\mathbb{N} \setminus A| < \infty\}$. Then F is a Frechét filter. But, it's not an ultrafilter.
- Let a ∈ I and F = {A | a ∈ A}. Then F is an ultrafilter on I, called the *principal ultrafilter on I generated by a*.
- Principal ultrafilters are trivial.

Fact Every filter on *I* is contained in an ultrafilter on *I*.

Proof By Zorn's lemma.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Example

- Let $I = \mathbb{N}$ and $F = \{A \mid |\mathbb{N} \setminus A| < \infty\}$. Then F is a Frechét filter. But, it's not an ultrafilter.
- Let a ∈ I and F = {A | a ∈ A}. Then F is an ultrafilter on I, called the *principal ultrafilter on I generated by a*.
- Principal ultrafilters are trivial.

Fact Every filter on *I* is contained in an ultrafilter on *I*. Proof By Zorn's lemma.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Example

- Let $I = \mathbb{N}$ and $F = \{A \mid |\mathbb{N} \setminus A| < \infty\}$. Then F is a Frechét filter. But, it's not an ultrafilter.
- Let a ∈ I and F = {A | a ∈ A}. Then F is an ultrafilter on I, called the *principal ultrafilter on I generated by a*.
- Principal ultrafilters are trivial.
- Fact Every filter on *I* is contained in an ultrafilter on *I*.

Proof By Zorn's lemma.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Example

- Let $I = \mathbb{N}$ and $F = \{A \mid |\mathbb{N} \setminus A| < \infty\}$. Then F is a Frechét filter. But, it's not an ultrafilter.
- Let a ∈ I and F = {A | a ∈ A}. Then F is an ultrafilter on I, called the *principal ultrafilter on I generated by a*.
- Principal ultrafilters are trivial.
- Fact Every filter on *I* is contained in an ultrafilter on *I*.
- Proof By Zorn's lemma.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Definition of ultraproducts

- Fix a first order signature *L*. Let *I* be a nonempty set and let *U* be a fixed ultrafilter on *I*.
- Consider an *I*-indexed family of *L*-structure $\{A_i \mid i \in I\}$.
- Let $A = \prod_{i \in I} A_i$ be the cartisian product of A_i .
- Let *f*, *g* ∈ *A*. Define a relation on *A*,
 f ~ *g* iff {*i* ∈ *l* | *f*(*i*) = *g*(*i*)} ∈ U.

- A/ ~ is the ultraproduct of the sets A_i with respect to U, denoted by ∏_U A_i.
- $\prod_{\mathcal{U}} A_i = \{ [f]_{\mathcal{U}} = f / \sim | f \in \prod_{i \in I} A_i \}.$

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Definition of ultraproducts

- Fix a first order signature *L*. Let *I* be a nonempty set and let *U* be a fixed ultrafilter on *I*.
- Consider an *I*-indexed family of *L*-structure $\{A_i \mid i \in I\}$.
- Let $A = \prod_{i \in I} A_i$ be the cartisian product of A_i .
- Let *f*, *g* ∈ *A*. Define a relation on *A*,
 f ~ *g* iff {*i* ∈ *l* | *f*(*i*) = *g*(*i*)} ∈ U.

- A/ ~ is the ultraproduct of the sets A_i with respect to U, denoted by ∏_U A_i.
- $\prod_{\mathcal{U}} A_i = \{ [f]_{\mathcal{U}} = f / \sim | f \in \prod_{i \in I} A_i \}.$

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Definition of ultraproducts

- Fix a first order signature *L*. Let *I* be a nonempty set and let *U* be a fixed ultrafilter on *I*.
- Consider an *I*-indexed family of *L*-structure $\{A_i \mid i \in I\}$.
- Let $A = \prod_{i \in I} A_i$ be the cartisian product of A_i .
- Let *f*, *g* ∈ *A*. Define a relation on *A*,
 f ~ *g* iff {*i* ∈ *I* | *f*(*i*) = *g*(*i*)} ∈ U.

- A/ ~ is the ultraproduct of the sets A_i with respect to U, denoted by ∏_U A_i.
- $\prod_{\mathcal{U}} A_i = \{ [f]_{\mathcal{U}} = f / \sim | f \in \prod_{i \in I} A_i \}.$

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Definition of ultraproducts

- Fix a first order signature *L*. Let *I* be a nonempty set and let *U* be a fixed ultrafilter on *I*.
- Consider an *I*-indexed family of *L*-structure $\{A_i \mid i \in I\}$.
- Let $A = \prod_{i \in I} A_i$ be the cartisian product of A_i .
- Let $f, g \in A$. Define a relation on A, $f \sim g$ iff $\{i \in I \mid f(i) = g(i)\} \in U$.

- A/ ~ is the ultraproduct of the sets A_i with respect to U, denoted by ∏_U A_i.
- $\prod_{\mathcal{U}} A_i = \{ [f]_{\mathcal{U}} = f / \sim | f \in \prod_{i \in I} A_i \}.$

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Definition of ultraproducts

- Fix a first order signature *L*. Let *I* be a nonempty set and let *U* be a fixed ultrafilter on *I*.
- Consider an *I*-indexed family of *L*-structure $\{A_i \mid i \in I\}$.
- Let $A = \prod_{i \in I} A_i$ be the cartisian product of A_i .
- Let $f, g \in A$. Define a relation on A, $f \sim g$ iff $\{i \in I \mid f(i) = g(i)\} \in U$.
- Fact The relation \sim is an equivalence relation on A.
 - A/ ~ is the ultraproduct of the sets A_i with respect to U, denoted by ∏_U A_i.
 - $\prod_{\mathcal{U}} A_i = \{ [f]_{\mathcal{U}} = f / \sim | f \in \prod_{i \in I} A_i \}.$

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Definition of ultraproducts

- Fix a first order signature *L*. Let *I* be a nonempty set and let *U* be a fixed ultrafilter on *I*.
- Consider an *I*-indexed family of *L*-structure $\{A_i \mid i \in I\}$.
- Let $A = \prod_{i \in I} A_i$ be the cartisian product of A_i .
- Let *f*, *g* ∈ *A*. Define a relation on *A*,
 f ~ *g* iff {*i* ∈ *I* | *f*(*i*) = *g*(*i*)} ∈ U.
- Fact The relation \sim is an equivalence relation on A.
 - A/ ~ is the ultraproduct of the sets A_i with respect to U, denoted by ∏_U A_i.
 - $\prod_{\mathcal{U}} A_i = \{ [f]_{\mathcal{U}} = f/ \sim | f \in \prod_{i \in I} A_i \}.$

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Definition of ultraproducts

- Fix a first order signature *L*. Let *I* be a nonempty set and let *U* be a fixed ultrafilter on *I*.
- Consider an *I*-indexed family of *L*-structure $\{A_i \mid i \in I\}$.
- Let $A = \prod_{i \in I} A_i$ be the cartisian product of A_i .
- Let *f*, *g* ∈ *A*. Define a relation on *A*,
 f ~ *g* iff {*i* ∈ *I* | *f*(*i*) = *g*(*i*)} ∈ U.
- Fact The relation \sim is an equivalence relation on *A*.
 - A/ ~ is the ultraproduct of the sets A_i with respect to U, denoted by ∏_U A_i.
 - $\prod_{\mathcal{U}} A_i = \{ [f]_{\mathcal{U}} = f/ \sim | f \in \prod_{i \in I} A_i \}.$

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Ultraproducts of first order structures

The ultraproduct $\prod_{\mathcal{U}} \mathcal{A}_i$ is defined to be an *L*-structure.

- The universe is $\prod_{\mathcal{U}} A_i$.
- for each constant *c* in *L*, define *f* by $f(i) = c^{A_i}$ for each $i \in I$. Then $c^{\prod_{\mathcal{U}} A_i} = [f]_{\mathcal{U}}$.
- for each predicate P in L, $P^{\prod_{\mathcal{U}} \mathcal{A}_i}([f_1]_{\mathcal{U}}, \cdots, [f_n]_{\mathcal{U}})$ iff $\{i \in I \mid P^{\mathcal{A}_i}(f_1(i), \cdots, f_n(i))\} \in \mathcal{U}.$
- for each function F in L, $F^{\prod_{\mathcal{U}} \mathcal{A}_i}([f_1]_{\mathcal{U}}, \cdots, [f_m]_{\mathcal{U}}) = [f]_{\mathcal{U}}$, where $f \in A$ is defined by $f(i) = F^{\mathcal{A}_i}(f_1(i), \cdots, f_m(i))$.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Ultraproducts of first order structures

The ultraproduct $\prod_{\mathcal{U}} A_i$ is defined to be an *L*-structure.

- The universe is $\prod_{\mathcal{U}} A_i$.
- for each constant *c* in *L*, define *f* by $f(i) = c^{A_i}$ for each $i \in I$. Then $c^{\prod_{\mathcal{U}} A_i} = [f]_{\mathcal{U}}$.
- for each predicate P in L, $P^{\prod_{\mathcal{U}} \mathcal{A}_i}([f_1]_{\mathcal{U}}, \cdots, [f_n]_{\mathcal{U}})$ iff $\{i \in I \mid P^{\mathcal{A}_i}(f_1(i), \cdots, f_n(i))\} \in \mathcal{U}.$
- for each function F in L, $F^{\prod_{\mathcal{U}} \mathcal{A}_i}([f_1]_{\mathcal{U}}, \cdots, [f_m]_{\mathcal{U}}) = [f]_{\mathcal{U}}$, where $f \in A$ is defined by $f(i) = F^{\mathcal{A}_i}(f_1(i), \cdots, f_m(i))$.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Ultraproducts of first order structures

The ultraproduct $\prod_{\mathcal{U}} A_i$ is defined to be an *L*-structure.

- The universe is $\prod_{\mathcal{U}} A_i$.
- for each constant *c* in *L*, define *f* by $f(i) = c^{A_i}$ for each $i \in I$. Then $c^{\prod_{\mathcal{U}} A_i} = [f]_{\mathcal{U}}$.
- for each predicate P in L, $P\Pi_{\mathcal{U}} \mathcal{A}_i([f_1]_{\mathcal{U}}, \cdots, [f_n]_{\mathcal{U}})$ iff $\{i \in I \mid P^{\mathcal{A}_i}(f_1(i), \cdots, f_n(i))\} \in \mathcal{U}.$
- for each function F in L, $F^{\prod_{\mathcal{U}} \mathcal{A}_i}([f_1]_{\mathcal{U}}, \cdots, [f_m]_{\mathcal{U}}) = [f]_{\mathcal{U}}$, where $f \in A$ is defined by $f(i) = F^{\mathcal{A}_i}(f_1(i), \cdots, f_m(i))$.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Ultraproducts of first order structures

The ultraproduct $\prod_{\mathcal{U}} A_i$ is defined to be an *L*-structure.

- The universe is $\prod_{\mathcal{U}} A_i$.
- for each constant *c* in *L*, define *f* by $f(i) = c^{A_i}$ for each $i \in I$. Then $c^{\prod_{\mathcal{U}} A_i} = [f]_{\mathcal{U}}$.
- for each predicate P in L, $P^{\prod_{\mathcal{U}} \mathcal{A}_i}([f_1]_{\mathcal{U}}, \cdots, [f_n]_{\mathcal{U}})$ iff $\{i \in I \mid P^{\mathcal{A}_i}(f_1(i), \cdots, f_n(i))\} \in \mathcal{U}.$
- for each function F in L, $F^{\prod_{\mathcal{U}} \mathcal{A}_i}([f_1]_{\mathcal{U}}, \cdots, [f_m]_{\mathcal{U}}) = [f]_{\mathcal{U}}$, where $f \in A$ is defined by $f(i) = F^{\mathcal{A}_i}(f_1(i), \cdots, f_m(i))$.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Ultraproducts of first order structures

The ultraproduct $\prod_{\mathcal{U}} A_i$ is defined to be an *L*-structure.

- The universe is $\prod_{\mathcal{U}} A_i$.
- for each constant *c* in *L*, define *f* by $f(i) = c^{A_i}$ for each $i \in I$. Then $c^{\prod_{\mathcal{U}} A_i} = [f]_{\mathcal{U}}$.
- for each predicate P in L, $P^{\prod_{\mathcal{U}} \mathcal{A}_i}([f_1]_{\mathcal{U}}, \cdots, [f_n]_{\mathcal{U}})$ iff $\{i \in I \mid P^{\mathcal{A}_i}(f_1(i), \cdots, f_n(i))\} \in \mathcal{U}.$
- for each function F in L, $F^{\prod_{\mathcal{U}} \mathcal{A}_i}([f_1]_{\mathcal{U}}, \cdots, [f_m]_{\mathcal{U}}) = [f]_{\mathcal{U}}$, where $f \in A$ is defined by $f(i) = F^{\mathcal{A}_i}(f_1(i), \cdots, f_m(i))$.

An *ultrapower* of \mathcal{A} is an ultraproduct $\prod_{\mathcal{U}} \mathcal{A}_i$ with $\mathcal{A}_i = \mathcal{A}$ for each $i \in I$, denoted by $\mathcal{A}^{\mathcal{U}}$.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Fundamental theorem of ultraproducts

Theorem (Łos Theorem)

For every L-formula $\varphi(x_1, \dots, x_n)$ and every $f_k \in \prod_{i \in I} A_i$ for each $1 \le k \le n$, we have

$$\prod_{\mathcal{U}} \mathcal{A}_i \models \varphi([f_1]_{\mathcal{U}}, \cdots, [f_n]_{\mathcal{U}})$$

iff

$$\{i \in I \mid \mathcal{A}_i \models \varphi(f_1(i), \cdots, f_n(i))\} \in \mathcal{U}.$$

Remark

It follows the compactness theorem.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Fundamental theorem of ultraproducts

Theorem (Łos Theorem)

For every L-formula $\varphi(x_1, \dots, x_n)$ and every $f_k \in \prod_{i \in I} A_i$ for each $1 \le k \le n$, we have

$$\prod_{\mathcal{U}} \mathcal{A}_i \models \varphi([f_1]_{\mathcal{U}}, \cdots, [f_n]_{\mathcal{U}})$$

iff

$$\{i \in I \mid \mathcal{A}_i \models \varphi(f_1(i), \cdots, f_n(i))\} \in \mathcal{U}.$$

Remark

It follows the compactness theorem.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Back to continuous logic

- Let X be a topological space and let (x_i)_{i∈I} be a family of elements of X.
- If \mathcal{U} is an ultrafilter on I and $x \in X$, we write

$$\lim_{\mathcal{U}} x_i = x$$

- Fact Let X be the compact Hausdorff space. Then the ultralimit always exists and is unique.
 - The ultralimits corresponds semantics of continuous logic.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Back to continuous logic

- Let X be a topological space and let (x_i)_{i∈I} be a family of elements of X.
- If \mathcal{U} is an ultrafilter on I and $x \in X$, we write

$$\lim_{\mathcal{U}} x_i = x$$

- Fact Let X be the compact Hausdorff space. Then the ultralimit always exists and is unique.
 - The ultralimits corresponds semantics of continuous logic.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Back to continuous logic

- Let X be a topological space and let (x_i)_{i∈I} be a family of elements of X.
- If \mathcal{U} is an ultrafilter on I and $x \in X$, we write

$$\lim_{\mathcal{U}} x_i = x$$

- Fact Let X be the compact Hausdorff space. Then the ultralimit always exists and is unique.
 - The ultralimits corresponds semantics of continuous logic.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Back to continuous logic

- Let X be a topological space and let (x_i)_{i∈I} be a family of elements of X.
- If \mathcal{U} is an ultrafilter on I and $x \in X$, we write

$$\lim_{\mathcal{U}} x_i = x$$

- Fact Let X be the compact Hausdorff space. Then the ultralimit always exists and is unique.
 - The ultralimits corresponds semantics of continuous logic.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

- Let {(*M_i*, *d_i*) | *i* ∈ *I*} be a family of bounded metric space with a fixed diameter *K*. Let *U* be an ultrafilter on *I*.
- Define d on $\prod_{i \in I} M_i$ by $d(x, y) = \lim_{\mathcal{U}} d_i(x_i, y_i)$, where $x = (x_i)_{i \in I}$ and $y = (y_i)_{i \in I}$.
- Check: *d* is a pseudometric on $\prod_{i \in I} M_i$.
- Let $x, y \in \prod_{i \in I} M_i$. Define a relation $x \sim y$ iff d(x, y) = 0.
- The relation \sim is an equivalence relation.
- We define (∏_{i∈I} M_i)_U as (∏_{i∈I} M_i)/ ~. The space ((∏_{i∈I} M_i)_U, d) is a metric space, and indeed a complete metric space, called the *ultraproduct* of {(M_i, d_i) | i ∈ I}.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

- Let {(*M_i*, *d_i*) | *i* ∈ *I*} be a family of bounded metric space with a fixed diameter *K*. Let U be an ultrafilter on *I*.
- Define d on $\prod_{i \in I} M_i$ by $d(x, y) = \lim_{\mathcal{U}} d_i(x_i, y_i)$, where $x = (x_i)_{i \in I}$ and $y = (y_i)_{i \in I}$.
- Check: *d* is a pseudometric on $\prod_{i \in I} M_i$.
- Let $x, y \in \prod_{i \in I} M_i$. Define a relation $x \sim y$ iff d(x, y) = 0.
- The relation \sim is an equivalence relation.
- We define (∏_{i∈I} M_i)_U as (∏_{i∈I} M_i)/ ~. The space ((∏_{i∈I} M_i)_U, d) is a metric space, and indeed a complete metric space, called the *ultraproduct* of {(M_i, d_i) | i ∈ I}.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

- Let {(*M_i*, *d_i*) | *i* ∈ *I*} be a family of bounded metric space with a fixed diameter *K*. Let U be an ultrafilter on *I*.
- Define d on $\prod_{i \in I} M_i$ by $d(x, y) = \lim_{\mathcal{U}} d_i(x_i, y_i)$, where $x = (x_i)_{i \in I}$ and $y = (y_i)_{i \in I}$.
- Check: *d* is a pseudometric on $\prod_{i \in I} M_i$.
- Let $x, y \in \prod_{i \in I} M_i$. Define a relation $x \sim y$ iff d(x, y) = 0.
- The relation \sim is an equivalence relation.
- We define (∏_{i∈I} M_i)_U as (∏_{i∈I} M_i)/ ~. The space ((∏_{i∈I} M_i)_U, d) is a metric space, and indeed a complete metric space, called the *ultraproduct* of {(M_i, d_i) | i ∈ I}.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

- Let {(*M_i*, *d_i*) | *i* ∈ *I*} be a family of bounded metric space with a fixed diameter *K*. Let U be an ultrafilter on *I*.
- Define d on $\prod_{i \in I} M_i$ by $d(x, y) = \lim_{\mathcal{U}} d_i(x_i, y_i)$, where $x = (x_i)_{i \in I}$ and $y = (y_i)_{i \in I}$.
- Check: *d* is a pseudometric on $\prod_{i \in I} M_i$.
- Let $x, y \in \prod_{i \in I} M_i$. Define a relation $x \sim y$ iff d(x, y) = 0.
- The relation \sim is an equivalence relation.
- We define (∏_{i∈I} M_i)_U as (∏_{i∈I} M_i)/ ~. The space ((∏_{i∈I} M_i)_U, d) is a metric space, and indeed a complete metric space, called the *ultraproduct* of {(M_i, d_i) | i ∈ I}.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

- Let {(*M_i*, *d_i*) | *i* ∈ *I*} be a family of bounded metric space with a fixed diameter *K*. Let U be an ultrafilter on *I*.
- Define d on $\prod_{i \in I} M_i$ by $d(x, y) = \lim_{\mathcal{U}} d_i(x_i, y_i)$, where $x = (x_i)_{i \in I}$ and $y = (y_i)_{i \in I}$.
- Check: *d* is a pseudometric on $\prod_{i \in I} M_i$.
- Let $x, y \in \prod_{i \in I} M_i$. Define a relation $x \sim y$ iff d(x, y) = 0.
- The relation \sim is an equivalence relation.
- We define (∏_{i∈I} M_i)_U as (∏_{i∈I} M_i)/ ~. The space ((∏_{i∈I} M_i)_U, d) is a metric space, and indeed a complete metric space, called the *ultraproduct* of {(M_i, d_i) | i ∈ I}.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

- Let {(*M_i*, *d_i*) | *i* ∈ *I*} be a family of bounded metric space with a fixed diameter *K*. Let U be an ultrafilter on *I*.
- Define d on $\prod_{i \in I} M_i$ by $d(x, y) = \lim_{\mathcal{U}} d_i(x_i, y_i)$, where $x = (x_i)_{i \in I}$ and $y = (y_i)_{i \in I}$.
- Check: *d* is a pseudometric on $\prod_{i \in I} M_i$.
- Let $x, y \in \prod_{i \in I} M_i$. Define a relation $x \sim y$ iff d(x, y) = 0.
- The relation \sim is an equivalence relation.
- We define (∏_{i∈I} M_i)_U as (∏_{i∈I} M_i)/ ~. The space ((∏_{i∈I} M_i)_U, d) is a metric space, and indeed a complete metric space, called the *ultraproduct* of {(M_i, d_i) | i ∈ I}.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Ultrapowers of metric spaces

• An *ultrapower* of *M* is an ultraproduct $(\prod_{i \in I} M_i)_{\mathcal{U}}$ with $M_i = M$ for each $i \in I$, denoted by $M^{\mathcal{U}}$.

Fact Every ultrapower of a closed bounded interval may be canonically identified with the interval itself.

 $[0,1]^{\mathcal{U}} = [0,1].$

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Ultrapowers of metric spaces

- An *ultrapower* of *M* is an ultraproduct $(\prod_{i \in I} M_i)_{\mathcal{U}}$ with $M_i = M$ for each $i \in I$, denoted by $M^{\mathcal{U}}$.
- Fact Every ultrapower of a closed bounded interval may be canonically identified with the interval itself.

 $[0,1]^{\mathcal{U}} = [0,1].$

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Ultrapowers of metric spaces

- An *ultrapower* of *M* is an ultraproduct $(\prod_{i \in I} M_i)_{\mathcal{U}}$ with $M_i = M$ for each $i \in I$, denoted by $M^{\mathcal{U}}$.
- Fact Every ultrapower of a closed bounded interval may be canonically identified with the interval itself.

۲

$$[0,1]^{\mathcal{U}} = [0,1].$$

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Ultraproducts of functions

Let \mathcal{U} be an ultrafilter on I.

- Suppose $\{(M_i, d_i) \mid i \in I\}$ and $\{(M'_i, d'_i) \mid i \in I\}$ are families of metric spaces, with a fixed diameter *K*.
- Fix n ≥ 1 and suppose f_i: Mⁿ_i → M'_i is uniformly continuous for each i ∈ I.
- Moreover, there is a function △_f as a common modulus of uniform continuity for all f_i's.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Ultraproducts of functions

Let \mathcal{U} be an ultrafilter on I.

- Suppose $\{(M_i, d_i) \mid i \in I\}$ and $\{(M'_i, d'_i) \mid i \in I\}$ are families of metric spaces, with a fixed diameter *K*.
- Fix n ≥ 1 and suppose f_i: Mⁿ_i → M'_i is uniformly continuous for each i ∈ I.
- Moreover, there is a function ∆_f as a common modulus of uniform continuity for all f_i's.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Ultraproducts of functions

Let \mathcal{U} be an ultrafilter on I.

- Suppose $\{(M_i, d_i) \mid i \in I\}$ and $\{(M'_i, d'_i) \mid i \in I\}$ are families of metric spaces, with a fixed diameter *K*.
- Fix n ≥ 1 and suppose f_i: Mⁿ_i → M'_i is uniformly continuous for each i ∈ I.
- Moreover, there is a function Δ_f as a common modulus of uniform continuity for all f_i's.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Ultraproducts of functions

We define

$$(\prod_{i\in I}f_i)_{\mathcal{U}}\colon (\prod_{i\in I}M_i)_{\mathcal{U}}^n\to (\prod_{i\in I}M_i')_{\mathcal{U}}$$

as follows:

 $\left(\prod_{i\in I}f_i\right)_{\mathcal{U}}\left([(x_i^1)_{i\in I}]_{\mathcal{U}},\cdots,[(x_i^n)_{i\in I}]_{\mathcal{U}}\right)=[(f_i(x_i^1,\cdots,x_i^n))_{i\in I}]_{\mathcal{U}},$

where $(x_i^k)_{i \in I} \in \prod_{i \in I} M_i$ for $1 \le k \le n$.

Claim $(\prod_{i \in I} f_i)_{\mathcal{U}}$ is uniformly continuous whose modulus of uniform continuity is also Δ_f .

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Ultraproducts of functions

We define

$$(\prod_{i\in I} f_i)_{\mathcal{U}} \colon (\prod_{i\in I} M_i)_{\mathcal{U}}^n \to (\prod_{i\in I} M'_i)_{\mathcal{U}}$$

as follows:

$$\left(\prod_{i\in I}f_i\right)_{\mathcal{U}}\left([(x_i^1)_{i\in I}]_{\mathcal{U}},\cdots,[(x_i^n)_{i\in I}]_{\mathcal{U}}\right)=\left[(f_i(x_i^1,\cdots,x_i^n))_{i\in I}]_{\mathcal{U}},$$

where $(x_i^k)_{i \in I} \in \prod_{i \in I} M_i$ for $1 \le k \le n$. Claim $(\prod_{i \in I} f_i)_{\mathcal{U}}$ is uniformly continuous whose modulus of uniform continuity is also Δ_f .

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Ultraproducts of *L*-structures

Let $\{M_i \mid i \in I\}$ be a family of *L*-structures, and let \mathcal{U} be an ultrafilter on *I*. The ultraproduct $\prod_{\mathcal{U}} \mathcal{M}_i$ of *L*-structures is defined to be an *L*-structure \mathcal{M} as follows:

- The universe is $M = (\prod_{i \in I} M_i)_{\mathcal{U}}$.
- for each constant *c* in *L*, define $c^{\mathcal{M}} = [(c^{\mathcal{M}_i})_{i \in I}]_{\mathcal{U}}$.
- for each predicate P in L, $P^{\mathcal{M}} = (\prod_{i \in I} P^{\mathcal{M}_i})_{\mathcal{U}} \colon M^n \to [0, 1]$. Note that $[0, 1]^{\mathcal{U}} = [0, 1]$.
- for each function *f* in *L*, $f^{\mathcal{M}} = (\prod_{i \in I} f_i^{\mathcal{M}_i})_{\mathcal{U}} \colon M^n \to M$.

Claim This definition is well-defined.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Ultraproducts of *L*-structures

Let $\{M_i \mid i \in I\}$ be a family of *L*-structures, and let \mathcal{U} be an ultrafilter on *I*. The ultraproduct $\prod_{\mathcal{U}} \mathcal{M}_i$ of *L*-structures is defined to be an *L*-structure \mathcal{M} as follows:

- The universe is $M = (\prod_{i \in I} M_i)_{\mathcal{U}}$.
- for each constant *c* in *L*, define $c^{\mathcal{M}} = [(c^{\mathcal{M}_i})_{i \in I}]_{\mathcal{U}}$.
- for each predicate P in L, $P^{\mathcal{M}} = (\prod_{i \in I} P^{\mathcal{M}_i})_{\mathcal{U}} \colon M^n \to [0, 1]$. Note that $[0, 1]^{\mathcal{U}} = [0, 1]$.

• for each function *f* in *L*, $f^{\mathcal{M}} = (\prod_{i \in I} f_i^{\mathcal{M}_i})_{\mathcal{U}} \colon M^n \to M$.

Claim This definition is well-defined.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Ultraproducts of *L*-structures

Let $\{M_i \mid i \in I\}$ be a family of *L*-structures, and let \mathcal{U} be an ultrafilter on *I*. The ultraproduct $\prod_{\mathcal{U}} \mathcal{M}_i$ of *L*-structures is defined to be an *L*-structure \mathcal{M} as follows:

- The universe is $M = (\prod_{i \in I} M_i)_{\mathcal{U}}$.
- for each constant *c* in *L*, define $c^{\mathcal{M}} = [(c^{\mathcal{M}_i})_{i \in I}]_{\mathcal{U}}$.
- for each predicate P in L, $P^{\mathcal{M}} = (\prod_{i \in I} P^{\mathcal{M}_i})_{\mathcal{U}} \colon M^n \to [0, 1]$. Note that $[0, 1]^{\mathcal{U}} = [0, 1]$.
- for each function *f* in *L*, $f^{\mathcal{M}} = (\prod_{i \in I} f_i^{\mathcal{M}_i})_{\mathcal{U}} \colon M^n \to M$.

Claim This definition is well-defined.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Ultraproducts of *L*-structures

Let $\{M_i \mid i \in I\}$ be a family of *L*-structures, and let \mathcal{U} be an ultrafilter on *I*. The ultraproduct $\prod_{\mathcal{U}} \mathcal{M}_i$ of *L*-structures is defined to be an *L*-structure \mathcal{M} as follows:

- The universe is $M = (\prod_{i \in I} M_i)_{\mathcal{U}}$.
- for each constant *c* in *L*, define $c^{\mathcal{M}} = [(c^{\mathcal{M}_i})_{i \in I}]_{\mathcal{U}}$.
- for each predicate P in L, $P^{\mathcal{M}} = (\prod_{i \in I} P^{\mathcal{M}_i})_{\mathcal{U}} \colon M^n \to [0, 1]$. Note that $[0, 1]^{\mathcal{U}} = [0, 1]$.
- for each function f in L, $f^{\mathcal{M}} = (\prod_{i \in I} f_i^{\mathcal{M}_i})_{\mathcal{U}} \colon M^n \to M$.

Claim This definition is well-defined.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Ultraproducts of *L*-structures

Let $\{M_i \mid i \in I\}$ be a family of *L*-structures, and let \mathcal{U} be an ultrafilter on *I*. The ultraproduct $\prod_{\mathcal{U}} \mathcal{M}_i$ of *L*-structures is defined to be an *L*-structure \mathcal{M} as follows:

- The universe is $M = (\prod_{i \in I} M_i)_{\mathcal{U}}$.
- for each constant *c* in *L*, define $c^{\mathcal{M}} = [(c^{\mathcal{M}_i})_{i \in I}]_{\mathcal{U}}$.
- for each predicate P in L, $P^{\mathcal{M}} = (\prod_{i \in I} P^{\mathcal{M}_i})_{\mathcal{U}} \colon M^n \to [0, 1]$. Note that $[0, 1]^{\mathcal{U}} = [0, 1]$.
- for each function f in L, $f^{\mathcal{M}} = (\prod_{i \in I} f_i^{\mathcal{M}_i})_{\mathcal{U}} \colon M^n \to M$.

Claim This definition is well-defined.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Ultraproducts of *L*-structures

Let $\{M_i \mid i \in I\}$ be a family of *L*-structures, and let \mathcal{U} be an ultrafilter on *I*. The ultraproduct $\prod_{\mathcal{U}} \mathcal{M}_i$ of *L*-structures is defined to be an *L*-structure \mathcal{M} as follows:

- The universe is $M = (\prod_{i \in I} M_i)_{\mathcal{U}}$.
- for each constant *c* in *L*, define $c^{\mathcal{M}} = [(c^{\mathcal{M}_i})_{i \in I}]_{\mathcal{U}}$.
- for each predicate P in L, $P^{\mathcal{M}} = (\prod_{i \in I} P^{\mathcal{M}_i})_{\mathcal{U}} \colon M^n \to [0, 1]$. Note that $[0, 1]^{\mathcal{U}} = [0, 1]$.

• for each function f in L, $f^{\mathcal{M}} = (\prod_{i \in I} f_i^{\mathcal{M}_i})_{\mathcal{U}} \colon M^n \to M$.

Claim This definition is well-defined.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Fundamental theorem of ultraproducts

Theorem (Łos Theorem for continuous logic)

Let $\varphi(x_1, \dots, x_n)$ be an L-formula. If $a^k = [(a_i^k)_{i \in I}]_{\mathcal{U}}$ are elements of M for each $1 \le k \le n$, then

$$\varphi^{\mathcal{M}}(\boldsymbol{a}^1,\cdots,\boldsymbol{a}^n) = \lim_{\mathcal{U}} \varphi^{\mathcal{M}_i}(\boldsymbol{a}^1_i,\cdots,\boldsymbol{a}^n_i).$$

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Theorem (Compactness Theorem)

Let T be an L-theory and let C be a class of L-structures. Assume that T is finitely satisfiable in C. Then there is an ultraproduct of structures from C that is a model of T.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Theorem (Downward Löwenheim-Skolem Theorem)

Let κ be an infinite cardinal and assume that $Card(L) \leq \kappa$. Let \mathcal{M} be an L-structure and suppose that $A \subseteq M$ has density character $\leq \kappa$. Then, there is an elementary substructure \mathcal{N} of \mathcal{M} such that

- $A \subseteq N \subseteq M$

• the density character of N is $\leq \kappa$.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Theorem

Let T be a complete L-theory and let κ be an infinite cardinal. Then T has a κ -universal domain, i.e., a κ -saturated and strongly κ -homogeneous model.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Counter Examples

Let $\mathcal U$ be a nonprincipal ultrafilter on $\mathbb N^+.$

$$f_n(x) = \begin{cases} 0 & 0 \le x < \frac{1}{n} \\ 1 & \frac{1}{n} \le x \le 1 \end{cases}$$

- Note that $(0, 0, 0, \dots, 0, \dots) \sim (0, 1, \frac{1}{2}, \dots, \frac{1}{n}, \dots)$, since $\lim_{\mathcal{U}} \frac{1}{n} = 0$.
- $\prod_{\mathcal{U}} f_n((0,0,0,\cdots,0,\cdots)) = 0$
- $\prod_{\mathcal{U}} f_n((0,1,\frac{1}{2},\cdots,\frac{1}{n},\cdots)) = 1.$
- It follows that $\prod_{\mathcal{U}} f_n$ is not well-defined.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Counter Examples

Let $\mathcal U$ be a nonprincipal ultrafilter on $\mathbb N^+.$

$$f_n(x) = \begin{cases} 0 & 0 \le x < \frac{1}{n} \\ 1 & \frac{1}{n} \le x \le 1 \end{cases}$$

- Note that $(0, 0, 0, \dots, 0, \dots) \sim (0, 1, \frac{1}{2}, \dots, \frac{1}{n}, \dots)$, since $\lim_{\mathcal{U}} \frac{1}{n} = 0$.
- $\prod_{\mathcal{U}} f_n((0,0,0,\cdots,0,\cdots)) = 0$
- $\prod_{\mathcal{U}} f_n((0,1,\frac{1}{2},\cdots,\frac{1}{n},\cdots)) = 1.$
- It follows that $\prod_{\mathcal{U}} f_n$ is not well-defined.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Counter Examples

Let \mathcal{U} be a nonprincipal ultrafilter on \mathbb{N}^+ .

$$f_n(x) = \begin{cases} 0 & 0 \le x < \frac{1}{n} \\ 1 & \frac{1}{n} \le x \le 1 \end{cases}$$

- Note that $(0, 0, 0, \dots, 0, \dots) \sim (0, 1, \frac{1}{2}, \dots, \frac{1}{n}, \dots)$, since $\lim_{\mathcal{U}} \frac{1}{n} = 0$.
- $\prod_{\mathcal{U}} f_n((0,0,0,\cdots,0,\cdots)) = 0$
- $\prod_{\mathcal{U}} f_n((0,1,\frac{1}{2},\cdots,\frac{1}{n},\cdots)) = 1.$
- It follows that $\prod_{\mathcal{U}} f_n$ is not well-defined.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Counter Examples

Let \mathcal{U} be a nonprincipal ultrafilter on \mathbb{N}^+ .

$$f_n(x) = \begin{cases} 0 & 0 \le x < \frac{1}{n} \\ 1 & \frac{1}{n} \le x \le 1 \end{cases}$$

- Note that $(0, 0, 0, \dots, 0, \dots) \sim (0, 1, \frac{1}{2}, \dots, \frac{1}{n}, \dots)$, since $\lim_{\mathcal{U}} \frac{1}{n} = 0$.
- $\prod_{\mathcal{U}} f_n((0,0,0,\cdots,0,\cdots)) = 0$
- $\prod_{\mathcal{U}} f_n((0,1,\frac{1}{2},\cdots,\frac{1}{n},\cdots)) = 1.$
- It follows that $\prod_{\mathcal{U}} f_n$ is not well-defined.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Counter Examples

Let $\mathcal U$ be a nonprincipal ultrafilter on $\mathbb N^+.$

$$f_n(x) = \begin{cases} 0 & 0 \le x < \frac{1}{n} \\ 1 & \frac{1}{n} \le x \le 1 \end{cases}$$

- Note that $(0, 0, 0, \dots, 0, \dots) \sim (0, 1, \frac{1}{2}, \dots, \frac{1}{n}, \dots)$, since $\lim_{\mathcal{U}} \frac{1}{n} = 0$.
- $\prod_{\mathcal{U}} f_n((0,0,0,\cdots,0,\cdots)) = 0$
- $\prod_{\mathcal{U}} f_n((0,1,\frac{1}{2},\cdots,\frac{1}{n},\cdots)) = 1.$
- It follows that $\prod_{\mathcal{U}} f_n$ is not well-defined.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Counter Examples

Let \mathcal{U} be a nonprincipal ultrafilter on \mathbb{N}^+ .

$$f_n(x) = \begin{cases} 0 & 0 \le x < \frac{1}{n} \\ 1 & \frac{1}{n} \le x \le 1 \end{cases}$$

- Note that $(0, 0, 0, \dots, 0, \dots) \sim (0, 1, \frac{1}{2}, \dots, \frac{1}{n}, \dots)$, since $\lim_{\mathcal{U}} \frac{1}{n} = 0$.
- $\prod_{\mathcal{U}} f_n((0,0,0,\cdots,0,\cdots)) = 0$
- $\prod_{\mathcal{U}} f_n((0,1,\frac{1}{2},\cdots,\frac{1}{n},\cdots)) = 1.$
- It follows that $\prod_{\mathcal{U}} f_n$ is not well-defined.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

- It is necessary and sufficient that the function *f* is uniformly continuous.
- For the sufficiency, it is straightforward.
- For the necessity, suppose that there is ε > 0 such that for every n ∈ N, there are a_n, b_n ∈ A with d(a_n, b_n) < ¹/_n and yet d(f(a_n), f(b_n)) > ε.
- Set $a = (a_1, \dots, a_n, \dots)$ and $b = (b_1, \dots, b_n, \dots)$. Let \mathcal{U} be a nonprincipal ultrafilter on \mathbb{N} .
- Then $[a]_{\mathcal{U}} = [b]_{\mathcal{U}}$ since $\lim_{\mathcal{U}} d(a_n, b_n) = 0$.
- However, $\lim_{\mathcal{U}} d(f(a_n), f(b_n)) \ge \epsilon$, and thus $[f(a)]_{\mathcal{U}} \ne [f(b)]_{\mathcal{U}}$.
- It follows that *f* is not well-defined on $\mathcal{A}^{\mathcal{U}}$.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

- It is necessary and sufficient that the function *f* is uniformly continuous.
- For the sufficiency, it is straightforward.
- For the necessity, suppose that there is ε > 0 such that for every n ∈ N, there are a_n, b_n ∈ A with d(a_n, b_n) < ¹/_n and yet d(f(a_n), f(b_n)) > ε.
- Set $a = (a_1, \dots, a_n, \dots)$ and $b = (b_1, \dots, b_n, \dots)$. Let \mathcal{U} be a nonprincipal ultrafilter on \mathbb{N} .
- Then $[a]_{\mathcal{U}} = [b]_{\mathcal{U}}$ since $\lim_{\mathcal{U}} d(a_n, b_n) = 0$.
- However, $\lim_{\mathcal{U}} d(f(a_n), f(b_n)) \ge \epsilon$, and thus $[f(a)]_{\mathcal{U}} \ne [f(b)]_{\mathcal{U}}$.
- It follows that *f* is not well-defined on $\mathcal{A}^{\mathcal{U}}$.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

- It is necessary and sufficient that the function f is uniformly continuous.
- For the sufficiency, it is straightforward.
- For the necessity, suppose that there is ε > 0 such that for every n ∈ N, there are a_n, b_n ∈ A with d(a_n, b_n) < ¹/_n and yet d(f(a_n), f(b_n)) > ε.
- Set $a = (a_1, \dots, a_n, \dots)$ and $b = (b_1, \dots, b_n, \dots)$. Let \mathcal{U} be a nonprincipal ultrafilter on \mathbb{N} .
- Then $[a]_{\mathcal{U}} = [b]_{\mathcal{U}}$ since $\lim_{\mathcal{U}} d(a_n, b_n) = 0$.
- However, $\lim_{\mathcal{U}} d(f(a_n), f(b_n)) \ge \epsilon$, and thus $[f(a)]_{\mathcal{U}} \ne [f(b)]_{\mathcal{U}}$.
- It follows that *f* is not well-defined on $\mathcal{A}^{\mathcal{U}}$.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

- It is necessary and sufficient that the function f is uniformly continuous.
- For the sufficiency, it is straightforward.
- For the necessity, suppose that there is ε > 0 such that for every n ∈ N, there are a_n, b_n ∈ A with d(a_n, b_n) < ¹/_n and yet d(f(a_n), f(b_n)) > ε.
- Set $a = (a_1, \dots, a_n, \dots)$ and $b = (b_1, \dots, b_n, \dots)$. Let \mathcal{U} be a nonprincipal ultrafilter on \mathbb{N} .
- Then $[a]_{\mathcal{U}} = [b]_{\mathcal{U}}$ since $\lim_{\mathcal{U}} d(a_n, b_n) = 0$.
- However, $\lim_{\mathcal{U}} d(f(a_n), f(b_n)) \ge \epsilon$, and thus $[f(a)]_{\mathcal{U}} \ne [f(b)]_{\mathcal{U}}$.
- It follows that *f* is not well-defined on $\mathcal{A}^{\mathcal{U}}$.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

- It is necessary and sufficient that the function f is uniformly continuous.
- For the sufficiency, it is straightforward.
- For the necessity, suppose that there is ε > 0 such that for every n ∈ N, there are a_n, b_n ∈ A with d(a_n, b_n) < ¹/_n and yet d(f(a_n), f(b_n)) > ε.
- Set $a = (a_1, \dots, a_n, \dots)$ and $b = (b_1, \dots, b_n, \dots)$. Let \mathcal{U} be a nonprincipal ultrafilter on \mathbb{N} .
- Then $[a]_{\mathcal{U}} = [b]_{\mathcal{U}}$ since $\lim_{\mathcal{U}} d(a_n, b_n) = 0$.
- However, $\lim_{\mathcal{U}} d(f(a_n), f(b_n)) \ge \epsilon$, and thus $[f(a)]_{\mathcal{U}} \ne [f(b)]_{\mathcal{U}}$.
- It follows that *f* is not well-defined on $\mathcal{A}^{\mathcal{U}}$.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

- It is necessary and sufficient that the function f is uniformly continuous.
- For the sufficiency, it is straightforward.
- For the necessity, suppose that there is ε > 0 such that for every n ∈ N, there are a_n, b_n ∈ A with d(a_n, b_n) < ¹/_n and yet d(f(a_n), f(b_n)) > ε.
- Set $a = (a_1, \dots, a_n, \dots)$ and $b = (b_1, \dots, b_n, \dots)$. Let \mathcal{U} be a nonprincipal ultrafilter on \mathbb{N} .
- Then $[a]_{\mathcal{U}} = [b]_{\mathcal{U}}$ since $\lim_{\mathcal{U}} d(a_n, b_n) = 0$.
- However, $\lim_{\mathcal{U}} d(f(a_n), f(b_n)) \ge \epsilon$, and thus $[f(a)]_{\mathcal{U}} \ne [f(b)]_{\mathcal{U}}$.
- It follows that *f* is not well-defined on $\mathcal{A}^{\mathcal{U}}$.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

- It is necessary and sufficient that the function f is uniformly continuous.
- For the sufficiency, it is straightforward.
- For the necessity, suppose that there is ε > 0 such that for every n ∈ N, there are a_n, b_n ∈ A with d(a_n, b_n) < ¹/_n and yet d(f(a_n), f(b_n)) > ε.
- Set $a = (a_1, \dots, a_n, \dots)$ and $b = (b_1, \dots, b_n, \dots)$. Let \mathcal{U} be a nonprincipal ultrafilter on \mathbb{N} .
- Then $[a]_{\mathcal{U}} = [b]_{\mathcal{U}}$ since $\lim_{\mathcal{U}} d(a_n, b_n) = 0$.
- However, $\lim_{\mathcal{U}} d(f(a_n), f(b_n)) \ge \epsilon$, and thus $[f(a)]_{\mathcal{U}} \ne [f(b)]_{\mathcal{U}}$.
- It follows that *f* is not well-defined on $\mathcal{A}^{\mathcal{U}}$.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Counter Examples

Let $\mathcal U$ be a nonprincipal ultrafilter on $\mathbb N^+.$

$$f_n(x) = \begin{cases} nx & 0 \le x < \frac{1}{n} \\ 1 & \frac{1}{n} \le x \le 1 \end{cases}$$

- These f_n 's are uniformly continuous functions, but have different modulus of uniform continuity Δ_{f_n} .
- Note that $(0, 0, 0, \dots, 0, \dots) \sim (0, 1, \frac{1}{2}, \dots, \frac{1}{n}, \dots)$, since $\lim_{\mathcal{U}} \frac{1}{n} = 0$.

•
$$\prod_{\mathcal{U}} f_n((0,0,0,\cdots,0,\cdots)) = 0$$

- $\prod_{\mathcal{U}} f_n((0,1,\frac{1}{2},\cdots,\frac{1}{n},\cdots)) = 1.$
- It follows that $\prod_{\mathcal{U}} f_n$ is not well-defined.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Counter Examples

Let $\mathcal U$ be a nonprincipal ultrafilter on $\mathbb N^+.$

$$f_n(x) = \begin{cases} nx & 0 \le x < \frac{1}{n} \\ 1 & \frac{1}{n} \le x \le 1 \end{cases}$$

- These f_n 's are uniformly continuous functions, but have different modulus of uniform continuity Δ_{f_n} .
- Note that $(0, 0, 0, \dots, 0, \dots) \sim (0, 1, \frac{1}{2}, \dots, \frac{1}{n}, \dots)$, since $\lim_{\mathcal{U}} \frac{1}{n} = 0$.

•
$$\prod_{\mathcal{U}} f_n((0,0,0,\cdots,0,\cdots)) = 0$$

- $\prod_{\mathcal{U}} f_n((0,1,\frac{1}{2},\cdots,\frac{1}{n},\cdots)) = 1.$
- It follows that $\prod_{\mathcal{U}} f_n$ is not well-defined.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Counter Examples

Let \mathcal{U} be a nonprincipal ultrafilter on \mathbb{N}^+ .

$$f_n(x) = \begin{cases} nx & 0 \le x < \frac{1}{n} \\ 1 & \frac{1}{n} \le x \le 1 \end{cases}$$

- These *f_n*'s are uniformly continuous functions, but have different modulus of uniform continuity Δ<sub>*f_n*.
 </sub>
- Note that $(0, 0, 0, \dots, 0, \dots) \sim (0, 1, \frac{1}{2}, \dots, \frac{1}{n}, \dots)$, since $\lim_{\mathcal{U}} \frac{1}{n} = 0$.

•
$$\prod_{\mathcal{U}} f_n((0,0,0,\cdots,0,\cdots)) = 0$$

- $\prod_{\mathcal{U}} f_n((0,1,\frac{1}{2},\cdots,\frac{1}{n},\cdots)) = 1.$
- It follows that $\prod_{\mathcal{U}} f_n$ is not well-defined.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Counter Examples

Let \mathcal{U} be a nonprincipal ultrafilter on \mathbb{N}^+ .

$$f_n(x) = \begin{cases} nx & 0 \le x < \frac{1}{n} \\ 1 & \frac{1}{n} \le x \le 1 \end{cases}$$

- These f_n 's are uniformly continuous functions, but have different modulus of uniform continuity Δ_{f_n} .
- Note that $(0, 0, 0, \dots, 0, \dots) \sim (0, 1, \frac{1}{2}, \dots, \frac{1}{n}, \dots)$, since $\lim_{\mathcal{U}} \frac{1}{n} = 0$.
- $\prod_{\mathcal{U}} f_n((0,0,0,\cdots,0,\cdots)) = 0$
- $\prod_{\mathcal{U}} f_n((0,1,\frac{1}{2},\cdots,\frac{1}{n},\cdots)) = 1.$
- It follows that $\prod_{\mathcal{U}} f_n$ is not well-defined.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Counter Examples

Let \mathcal{U} be a nonprincipal ultrafilter on \mathbb{N}^+ .

$$f_n(x) = \begin{cases} nx & 0 \le x < \frac{1}{n} \\ 1 & \frac{1}{n} \le x \le 1 \end{cases}$$

- These *f_n*'s are uniformly continuous functions, but have different modulus of uniform continuity Δ<sub>*f_n*.
 </sub>
- Note that $(0, 0, 0, \dots, 0, \dots) \sim (0, 1, \frac{1}{2}, \dots, \frac{1}{n}, \dots)$, since $\lim_{\mathcal{U}} \frac{1}{n} = 0$.

•
$$\prod_{\mathcal{U}} f_n((0,0,0,\cdots,0,\cdots)) = 0$$

- $\prod_{\mathcal{U}} f_n((0,1,\frac{1}{2},\cdots,\frac{1}{n},\cdots)) = 1.$
- It follows that $\prod_{\mathcal{U}} f_n$ is not well-defined.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Counter Examples

Let \mathcal{U} be a nonprincipal ultrafilter on \mathbb{N}^+ .

$$f_n(x) = \begin{cases} nx & 0 \le x < \frac{1}{n} \\ 1 & \frac{1}{n} \le x \le 1 \end{cases}$$

- These *f_n*'s are uniformly continuous functions, but have different modulus of uniform continuity Δ<sub>*f_n*.
 </sub>
- Note that $(0, 0, 0, \dots, 0, \dots) \sim (0, 1, \frac{1}{2}, \dots, \frac{1}{n}, \dots)$, since $\lim_{\mathcal{U}} \frac{1}{n} = 0$.

•
$$\prod_{\mathcal{U}} f_n((0,0,0,\cdots,0,\cdots)) = 0$$

- $\prod_{\mathcal{U}} f_n((0,1,\frac{1}{2},\cdots,\frac{1}{n},\cdots)) = 1.$
- It follows that $\prod_{\mathcal{U}} f_n$ is not well-defined.

Ultrafilters Ultraproducts of FO Ultraproducts of CL Uniform continuity

Counter Examples

Let \mathcal{U} be a nonprincipal ultrafilter on \mathbb{N}^+ .

• For each $n \in \mathbb{N}^+$, define $f_n \colon [0, 1] \to [0, 1]$ as follows:

$$f_n(x) = \begin{cases} nx & 0 \le x < \frac{1}{n} \\ 1 & \frac{1}{n} \le x \le 1 \end{cases}$$

- These *f_n*'s are uniformly continuous functions, but have different modulus of uniform continuity Δ<sub>*f_n*.
 </sub>
- Note that $(0, 0, 0, \dots, 0, \dots) \sim (0, 1, \frac{1}{2}, \dots, \frac{1}{n}, \dots)$, since $\lim_{\mathcal{U}} \frac{1}{n} = 0$.

•
$$\prod_{\mathcal{U}} f_n((0,0,0,\cdots,0,\cdots)) = 0$$

- $\prod_{\mathcal{U}} f_n((0,1,\frac{1}{2},\cdots,\frac{1}{n},\cdots)) = 1.$
- It follows that $\prod_{\mathcal{U}} f_n$ is not well-defined.

Types Logic topology Metric topology Functions on type spaces

- Let *M* ⊨ *T* and *A* ⊆ *M*. Denote *L*(*A*)-structure (*M*, *a*)_{*a*∈*A*} by *M*_{*A*} and denote the theory Th_{*L*(*A*)}(*M*_{*A*}) by *T*_{*A*}.
- A set *p* of *L*(*A*)-conditions with *n* free variables
 x = (x₁, ..., x_n), is called a (complete) *n*-type over *A* if
 there exists a model *M*_A ⊨ *T*_A and *e* ∈ *Mⁿ* such that *p* is
 the set of all *L*(*A*)-conditions *E*(*x*) for which *M*_A ⊨ *E*(*e*).
- We denote p by tp(e/A) and say that e realizes p in \mathcal{M} .
- The collection of all such *n*-types over *A* is denoted by $S_n(T_A)$, or simply $S_n(A)$.

Types Logic topology Metric topology Functions on type spaces

- Let *M* ⊨ *T* and *A* ⊆ *M*. Denote *L*(*A*)-structure (*M*, *a*)_{*a*∈*A*} by *M*_{*A*} and denote the theory Th_{*L*(*A*)}(*M*_{*A*}) by *T*_{*A*}.
- A set *p* of *L*(*A*)-conditions with *n* free variables
 x = (x₁, ··· , x_n), is called a (complete) *n*-type over *A* if
 there exists a model *M_A* ⊨ *T_A* and *e* ∈ *Mⁿ* such that *p* is
 the set of all *L*(*A*)-conditions *E*(*x*) for which *M_A* ⊨ *E*(*e*).
- We denote p by tp(e/A) and say that e realizes p in \mathcal{M} .
- The collection of all such *n*-types over *A* is denoted by $S_n(T_A)$, or simply $S_n(A)$.

Types Logic topology Metric topology Functions on type spaces

- Let *M* ⊨ *T* and *A* ⊆ *M*. Denote *L*(*A*)-structure (*M*, *a*)_{*a*∈*A*} by *M*_{*A*} and denote the theory Th_{*L*(*A*)}(*M*_{*A*}) by *T*_{*A*}.
- A set *p* of *L*(*A*)-conditions with *n* free variables
 x = (x₁, ··· , x_n), is called a (complete) *n*-type over *A* if
 there exists a model *M_A* ⊨ *T_A* and *e* ∈ *Mⁿ* such that *p* is
 the set of all *L*(*A*)-conditions *E*(*x*) for which *M_A* ⊨ *E*(*e*).
- We denote p by tp(e/A) and say that e realizes p in \mathcal{M} .
- The collection of all such *n*-types over *A* is denoted by $S_n(T_A)$, or simply $S_n(A)$.

Types Logic topology Metric topology Functions on type spaces

- Let *M* ⊨ *T* and *A* ⊆ *M*. Denote *L*(*A*)-structure (*M*, *a*)_{*a*∈*A*} by *M*_{*A*} and denote the theory Th_{*L*(*A*)}(*M*_{*A*}) by *T*_{*A*}.
- A set *p* of *L*(*A*)-conditions with *n* free variables
 x = (x₁, ··· , x_n), is called a (complete) *n*-type over *A* if
 there exists a model *M_A* ⊨ *T_A* and *e* ∈ *Mⁿ* such that *p* is
 the set of all *L*(*A*)-conditions *E*(*x*) for which *M_A* ⊨ *E*(*e*).
- We denote p by tp(e/A) and say that e realizes p in \mathcal{M} .
- The collection of all such *n*-types over *A* is denoted by $S_n(T_A)$, or simply $S_n(A)$.

Types Logic topology Metric topology Functions on type spaces

The logic topology on types

- Let $\varphi(x_1, \dots, x_n)$ be an L(A)-formula and let $\epsilon > 0$.
- $[\varphi < \epsilon] = \{p \in S_n(T_A) \mid \text{for some } 0 \le \delta < \epsilon, \text{ the condition} \\ (\varphi \le \delta) \in p\}.$
- The *logic topology* on S_n(T_A) is defined as follows:
 If p ∈ S_n(T_A), then the basic neighborhoods of p are the set of the form [φ < ε] for which the condition φ = 0 is in p and ε > 0.

Types Logic topology Metric topology Functions on type spaces

The logic topology on types

- Let $\varphi(x_1, \dots, x_n)$ be an L(A)-formula and let $\epsilon > 0$.
- $[\varphi < \epsilon] = \{ p \in S_n(T_A) \mid \text{for some } 0 \le \delta < \epsilon, \text{ the condition} \\ (\varphi \le \delta) \in p \}.$
- The *logic topology* on S_n(T_A) is defined as follows:
 If p ∈ S_n(T_A), then the basic neighborhoods of p are the set of the form [φ < ε] for which the condition φ = 0 is in p and ε > 0.

Types Logic topology Metric topology Functions on type spaces

The logic topology on types

- Let $\varphi(x_1, \dots, x_n)$ be an L(A)-formula and let $\epsilon > 0$.
- $[\varphi < \epsilon] = \{p \in S_n(T_A) \mid \text{for some } 0 \le \delta < \epsilon, \text{ the condition} \\ (\varphi \le \delta) \in p\}.$
- The *logic topology* on S_n(T_A) is defined as follows:
 If p ∈ S_n(T_A), then the basic neighborhoods of p are the set of the form [φ < ε] for which the condition φ = 0 is in p and ε > 0.

Types Logic topology Metric topology Functions on type spaces

Theorem

The logic topolgy on $S_n(T_A)$ is compact and Hausdorff.

Types Logic topology Metric topology Functions on type spaces

The metric topology on types

- Let \mathcal{M}_A be a model of \mathcal{T}_A such that each type in $S_n(\mathcal{T}_A)$ is realized.
- For $p, q \in S_n(T_A)$, we define d(p, q) to be

 $\inf\{\max_{1\leq j\leq n} d(b_j,c_j) \mid \mathcal{M}_A \models p[b_1,\cdots,b_n], \mathcal{M}_A \models q[c_1,\cdots,c_n]\}.$

Claim The definition of d(p,q) does not depend on \mathcal{M}_A .

Note that (S_n(T_A), d) is a metric space, and d induces a metric topology on S_n(T_A).

Types Logic topology Metric topology Functions on type spaces

The metric topology on types

- Let \mathcal{M}_A be a model of \mathcal{T}_A such that each type in $S_n(\mathcal{T}_A)$ is realized.
- For $p, q \in S_n(T_A)$, we define d(p, q) to be

 $\inf\{\max_{1\leq j\leq n} d(b_j, c_j) \mid \mathcal{M}_A \models p[b_1, \cdots, b_n], \mathcal{M}_A \models q[c_1, \cdots, c_n]\}.$

Claim The definition of d(p,q) does not depend on \mathcal{M}_A .

• Note that $(S_n(T_A), d)$ is a metric space, and *d* induces a metric topology on $S_n(T_A)$.

Types Logic topology Metric topology Functions on type spaces

The metric topology on types

- Let \mathcal{M}_A be a model of \mathcal{T}_A such that each type in $S_n(\mathcal{T}_A)$ is realized.
- For $p, q \in S_n(T_A)$, we define d(p, q) to be

 $\inf\{\max_{1\leq j\leq n} d(b_j, c_j) \mid \mathcal{M}_A \models p[b_1, \cdots, b_n], \mathcal{M}_A \models q[c_1, \cdots, c_n]\}.$

Claim The definition of d(p,q) does not depend on \mathcal{M}_A .

• Note that (*S_n*(*T_A*), *d*) is a metric space, and *d* induces a metric topology on *S_n*(*T_A*).

Types Logic topology Metric topology Functions on type spaces

The metric topology on types

- Let \mathcal{M}_A be a model of \mathcal{T}_A such that each type in $S_n(\mathcal{T}_A)$ is realized.
- For $p, q \in S_n(T_A)$, we define d(p, q) to be

$$\inf\{\max_{1\leq j\leq n} d(b_j,c_j) \mid \mathcal{M}_A \models p[b_1,\cdots,b_n], \mathcal{M}_A \models q[c_1,\cdots,c_n]\}.$$

Claim The definition of d(p, q) does not depend on \mathcal{M}_A .

Note that (S_n(T_A), d) is a metric space, and d induces a metric topology on S_n(T_A).

Types Logic topology Metric topology Functions on type spaces

Theorem

On $S_n(T_A)$, the metric topology is finer than the logic topology.

Theorem

The metric space $(S_n(T_A), d)$ is complete.

Types Logic topology Metric topology Functions on type spaces

Theorem

On $S_n(T_A)$, the metric topology is finer than the logic topology.

Theorem

The metric space $(S_n(T_A), d)$ is complete.

Types Logic topology Metric topology Functions on type spaces

Ryll-Nardzewski Theorem-continuous versoin

Theorem (Henson)

Let T be a complete countable theory. Then the following are equivaent:

- T is separably categorical, i.e., T has a unique separable model up to isomorphism.
- **2** For each n, the metric space $(S_n(T), d)$ is compact.
- For each n, the logic topology and the metric topology coincide on S_n(T).

Types Logic topology Metric topology Functions on type spaces

Separably categorical theories

The following theories are separably categorical:

- The theory of infinite dimensional Hilbert spaces.
- The theory of the Urysohn sphere.
- The theory of atomless probability algebras.

Types Logic topology Metric topology Functions on type spaces

- Let \mathcal{M}_A be a model of T_A in which every type in $S_n(T_A)$ is realized for each $n \ge 1$.
- Let $\varphi(x_1, \cdots, x_n)$ be an L(A)-formula.
- For each p ∈ S_n(T_A), define φ̃ = r, where r is the unique real number such that φ = r is in p.
- Equivalently, $\tilde{\varphi}(p) = \varphi^{\mathcal{M}_A}(b)$ where $b \models p$.

Types Logic topology Metric topology Functions on type spaces

- Let \mathcal{M}_A be a model of T_A in which every type in $S_n(T_A)$ is realized for each $n \ge 1$.
- Let $\varphi(x_1, \dots, x_n)$ be an L(A)-formula.
- For each p ∈ S_n(T_A), define φ̃ = r, where r is the unique real number such that φ = r is in p.
- Equivalently, $\tilde{\varphi}(p) = \varphi^{\mathcal{M}_A}(b)$ where $b \models p$.

Types Logic topology Metric topology Functions on type spaces

- Let \mathcal{M}_A be a model of T_A in which every type in $S_n(T_A)$ is realized for each $n \ge 1$.
- Let $\varphi(x_1, \cdots, x_n)$ be an L(A)-formula.
- For each *p* ∈ *S_n*(*T_A*), define φ̃ = *r*, where *r* is the unique real number such that φ = *r* is in *p*.
- Equivalently, $\tilde{\varphi}(p) = \varphi^{\mathcal{M}_A}(b)$ where $b \models p$.

Types Logic topology Metric topology Functions on type spaces

- Let \mathcal{M}_A be a model of T_A in which every type in $S_n(T_A)$ is realized for each $n \ge 1$.
- Let $\varphi(x_1, \cdots, x_n)$ be an L(A)-formula.
- For each p ∈ S_n(T_A), define φ̃ = r, where r is the unique real number such that φ = r is in p.
- Equivalently, $\tilde{\varphi}(p) = \varphi^{\mathcal{M}_{\mathcal{A}}}(b)$ where $b \models p$.

Types Logic topology Metric topology Functions on type spaces

Theorem

Let $\varphi(x)$ be an L(A)-formula. Then $\tilde{\varphi} \colon S_n(T_A) \to [0, 1]$ is continuous with respect to the logic topology and uniformly continuous with respect to the metric topology.

Types Logic topology Metric topology Functions on type spaces

Thanks!!

Thanks for your attention!