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Ultraproducts of FO
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Let I be a nonempty set. A filter on I is a collection F of subsets
of I satisfying:

1 ∅ /∈ F and I ∈ F .
2 A,B ∈ F implies A ∩ B ∈ F
3 A ⊆ B ⊆ I and A ∈ F implies B ∈ F .

Elements in F are “big" elements.
A filter is an ultrafilter if it is maximal under ⊆ among filters on I.
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Example

Let I = N and F = {A | |N\A| <∞}. Then F is a Frechét
filter. But, it’s not an ultrafilter.
Let a ∈ I and F = {A | a ∈ A}. Then F is an ultrafilter on I,
called the principal ultrafilter on I generated by a.
Principal ultrafilters are trivial.

Fact Every filter on I is contained in an ultrafilter on I.
Proof By Zorn’s lemma.
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Definition of ultraproducts

Fix a first order signature L. Let I be a nonempty set and
let U be a fixed ultrafilter on I.
Consider an I-indexed family of L-structure {Ai | i ∈ I}.
Let A =

∏
i∈I Ai be the cartisian product of Ai .

Let f ,g ∈ A. Define a relation on A,
f ∼ g iff {i ∈ I | f (i) = g(i)} ∈ U .

Fact The relation ∼ is an equivalence relation on A.
A/ ∼ is the ultraproduct of the sets Ai with respect to U ,
denoted by

∏
U Ai .∏

U Ai = {[f ]U = f/ ∼| f ∈
∏

i∈I Ai}.
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Ultraproducts of first order structures

The ultraproduct
∏
U Ai is defined to be an L-structure.

The universe is
∏
U Ai .

for each constant c in L, define f by f (i) = cAi for each
i ∈ I. Then c

∏
U Ai = [f ]U .

for each predicate P in L, P
∏

U Ai ([f1]U , · · · , [fn]U ) iff
{i ∈ I | PAi (f1(i), · · · , fn(i))} ∈ U .
for each function F in L, F

∏
U Ai ([f1]U , · · · , [fm]U ) = [f ]U ,

where f ∈ A is defined by f (i) = FAi (f1(i), · · · , fm(i)).
An ultrapower of A is an ultraproduct

∏
U Ai with Ai = A for

each i ∈ I, denoted by AU .
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Fundamental theorem of ultraproducts

Theorem (Łos Theorem)

For every L-formula ϕ(x1, · · · , xn) and every fk ∈
∏

i∈I Ai for
each 1 ≤ k ≤ n, we have∏

U
Ai |= ϕ([f1]U , · · · , [fn]U )

iff
{i ∈ I | Ai |= ϕ(f1(i), · · · , fn(i))} ∈ U .

Remark
It follows the compactness theorem.
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Back to continuous logic

Let X be a topological space and let (xi)i∈I be a family of
elements of X .
If U is an ultrafilter on I and x ∈ X , we write

lim
U

xi = x

and say that x is the ultralimit of (xi)i∈I along U if for every
open set F containing x , {i ∈ I | xi ∈ F} ∈ U .

Fact Let X be the compact Hausdorff space. Then the ultralimit
always exists and is unique.
The ultralimits corresponds semantics of continuous logic.
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Ultraproducts of metric spaces

Let {(Mi ,di) | i ∈ I} be a family of bounded metric space
with a fixed diameter K . Let U be an ultrafilter on I.
Define d on

∏
i∈I Mi by d(x , y) = limU di(xi , yi), where

x = (xi)i∈I and y = (yi)i∈I .
Check: d is a pseudometric on

∏
i∈I Mi .

Let x , y ∈
∏

i∈I Mi . Define a relation x ∼ y iff d(x , y) = 0.
The relation ∼ is an equivalence relation.
We define (

∏
i∈I Mi)U as (

∏
i∈I Mi)/ ∼. The space(

(
∏

i∈I Mi)U ,d
)

is a metric space, and indeed a complete
metric space, called the ultraproduct of {(Mi ,di) | i ∈ I}.
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Ultrapowers of metric spaces

An ultrapower of M is an ultraproduct (
∏

i∈I Mi)U with
Mi = M for each i ∈ I, denoted by MU .

Fact Every ultrapower of a closed bounded interval may be
canonically identified with the interval itself.

[0,1]U = [0,1].
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Ultraproducts of functions

Let U be an ultrafilter on I.
Suppose {(Mi ,di) | i ∈ I} and {(M ′i ,d ′i ) | i ∈ I} are families
of metric spaces, with a fixed diameter K .
Fix n ≥ 1 and suppose fi : Mn

i → M ′i is uniformly
continuous for each i ∈ I.
Moreover, there is a function ∆f as a common modulus of
uniform continuity for all fi ’s.
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Ultraproducts of functions

We define

(
∏
i∈I

fi)U : (
∏
i∈I

Mi)
n
U → (

∏
i∈I

M ′i )U

as follows:

(
∏
i∈I

fi)U
(
[(x1

i )i∈I ]U , · · · , [(xn
i )i∈I ]U

)
= [(fi(x1

i , · · · , xn
i ))i∈I ]U ,

where (xk
i )i∈I ∈

∏
i∈I Mi for 1 ≤ k ≤ n.

Claim (
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Ultraproducts of L-structures

Let {Mi | i ∈ I} be a family of L-structures, and let U be an
ultrafilter on I. The ultraproduct

∏
UMi of L-structures is

defined to be an L-structureM as follows:
The universe is M = (

∏
i∈I Mi)U .

for each constant c in L, define cM = [(cMi )i∈I ]U .
for each predicate P in L, PM = (

∏
i∈I PMi )U : Mn → [0,1].

Note that [0,1]U = [0,1].
for each function f in L, fM = (

∏
i∈I fMi

i )U : Mn → M.
Claim This definition is well-defined.

An ultrapower ofM is an ultraproduct
∏
UMi withMi =M for

each i ∈ I, denoted byMU .
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Fundamental theorem of ultraproducts

Theorem (Łos Theorem for continuous logic)

Let ϕ(x1, · · · , xn) be an L-formula. If ak = [(ak
i )i∈I ]U are

elements of M for each 1 ≤ k ≤ n, then

ϕM(a1, · · · ,an) = lim
U
ϕMi (a1

i , · · · ,an
i ).
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Theorem (Compactness Theorem)
Let T be an L-theory and let C be a class of L-structures.
Assume that T is finitely satisfiable in C. Then there is an
ultraproduct of structures from C that is a model of T .
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Theorem (Downward Löwenheim-Skolem Theorem)

Let κ be an infinite cardinal and assume that Card(L) ≤ κ. Let
M be an L-structure and suppose that A ⊆ M has density
character ≤ κ. Then, there is an elementary substructure N of
M such that

1 N �M
2 A ⊆ N ⊆ M
3 the density character of N is ≤ κ.
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Theorem
Let T be a complete L-theory and let κ be an infinite cardinal.
Then T has a κ-universal domain, i.e., a κ-saturated and
strongly κ-homogeneous model.
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Counter Examples

Let U be a nonprincipal ultrafilter on N+.
For each n ∈ N+, define a discontinuous function
fn : [0,1]→ [0,1] as follows:

fn(x) =

{
0 0 ≤ x < 1

n
1 1

n ≤ x ≤ 1

Note that (0,0,0, · · · ,0, · · · ) ∼ (0,1, 1
2 , · · · ,

1
n , · · · ),

since limU 1
n = 0.∏

U fn
(
(0,0,0, · · · ,0, · · · )

)
= 0∏

U fn
(
(0,1, 1

2 , · · · ,
1
n , · · · )

)
= 1.

It follows that
∏
U fn is not well-defined.
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Uniform continuity

It is necessary and sufficient that the function f is uniformly
continuous.
For the sufficiency, it is straightforward.
For the necessity, suppose that there is ε > 0 such that for
every n ∈ N, there are an,bn ∈ A with d(an,bn) < 1

n and
yet d(f (an), f (bn)) > ε.
Set a = (a1, · · · ,an, · · · ) and b = (b1, · · · ,bn, · · · ).
Let U be a nonprincipal ultrafilter on N.
Then [a]U = [b]U since limU d(an,bn) = 0.
However, limU d

(
f (an), f (bn)

)
≥ ε, and thus

[f (a)]U 6= [f (b)]U .
It follows that f is not well-defined on AU .
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Counter Examples

Let U be a nonprincipal ultrafilter on N+.
For each n ∈ N+, define fn : [0,1]→ [0,1] as follows:

fn(x) =

{
nx 0 ≤ x < 1

n
1 1

n ≤ x ≤ 1

These fn’s are uniformly continuous functions, but have
different modulus of uniform continuity ∆fn .
Note that (0,0,0, · · · ,0, · · · ) ∼ (0,1, 1

2 , · · · ,
1
n , · · · ),

since limU 1
n = 0.∏

U fn
(
(0,0,0, · · · ,0, · · · )

)
= 0∏

U fn
(
(0,1, 1

2 , · · · ,
1
n , · · · )

)
= 1.

It follows that
∏
U fn is not well-defined.

19



Ultraproducts
Type spaces

Ultrafilters
Ultraproducts of FO
Ultraproducts of CL
Uniform continuity

Counter Examples

Let U be a nonprincipal ultrafilter on N+.
For each n ∈ N+, define fn : [0,1]→ [0,1] as follows:

fn(x) =

{
nx 0 ≤ x < 1

n
1 1

n ≤ x ≤ 1

These fn’s are uniformly continuous functions, but have
different modulus of uniform continuity ∆fn .
Note that (0,0,0, · · · ,0, · · · ) ∼ (0,1, 1

2 , · · · ,
1
n , · · · ),

since limU 1
n = 0.∏

U fn
(
(0,0,0, · · · ,0, · · · )

)
= 0∏

U fn
(
(0,1, 1

2 , · · · ,
1
n , · · · )

)
= 1.

It follows that
∏
U fn is not well-defined.

19



Ultraproducts
Type spaces

Ultrafilters
Ultraproducts of FO
Ultraproducts of CL
Uniform continuity

Counter Examples

Let U be a nonprincipal ultrafilter on N+.
For each n ∈ N+, define fn : [0,1]→ [0,1] as follows:

fn(x) =

{
nx 0 ≤ x < 1

n
1 1

n ≤ x ≤ 1

These fn’s are uniformly continuous functions, but have
different modulus of uniform continuity ∆fn .
Note that (0,0,0, · · · ,0, · · · ) ∼ (0,1, 1

2 , · · · ,
1
n , · · · ),

since limU 1
n = 0.∏

U fn
(
(0,0,0, · · · ,0, · · · )

)
= 0∏

U fn
(
(0,1, 1

2 , · · · ,
1
n , · · · )

)
= 1.

It follows that
∏
U fn is not well-defined.

19



Ultraproducts
Type spaces

Ultrafilters
Ultraproducts of FO
Ultraproducts of CL
Uniform continuity

Counter Examples

Let U be a nonprincipal ultrafilter on N+.
For each n ∈ N+, define fn : [0,1]→ [0,1] as follows:

fn(x) =

{
nx 0 ≤ x < 1

n
1 1

n ≤ x ≤ 1

These fn’s are uniformly continuous functions, but have
different modulus of uniform continuity ∆fn .
Note that (0,0,0, · · · ,0, · · · ) ∼ (0,1, 1

2 , · · · ,
1
n , · · · ),

since limU 1
n = 0.∏

U fn
(
(0,0,0, · · · ,0, · · · )

)
= 0∏

U fn
(
(0,1, 1

2 , · · · ,
1
n , · · · )

)
= 1.

It follows that
∏
U fn is not well-defined.

19



Ultraproducts
Type spaces

Ultrafilters
Ultraproducts of FO
Ultraproducts of CL
Uniform continuity

Counter Examples

Let U be a nonprincipal ultrafilter on N+.
For each n ∈ N+, define fn : [0,1]→ [0,1] as follows:

fn(x) =

{
nx 0 ≤ x < 1

n
1 1

n ≤ x ≤ 1

These fn’s are uniformly continuous functions, but have
different modulus of uniform continuity ∆fn .
Note that (0,0,0, · · · ,0, · · · ) ∼ (0,1, 1

2 , · · · ,
1
n , · · · ),

since limU 1
n = 0.∏

U fn
(
(0,0,0, · · · ,0, · · · )

)
= 0∏

U fn
(
(0,1, 1

2 , · · · ,
1
n , · · · )

)
= 1.

It follows that
∏
U fn is not well-defined.

19



Ultraproducts
Type spaces

Ultrafilters
Ultraproducts of FO
Ultraproducts of CL
Uniform continuity

Counter Examples

Let U be a nonprincipal ultrafilter on N+.
For each n ∈ N+, define fn : [0,1]→ [0,1] as follows:

fn(x) =

{
nx 0 ≤ x < 1

n
1 1

n ≤ x ≤ 1

These fn’s are uniformly continuous functions, but have
different modulus of uniform continuity ∆fn .
Note that (0,0,0, · · · ,0, · · · ) ∼ (0,1, 1

2 , · · · ,
1
n , · · · ),

since limU 1
n = 0.∏

U fn
(
(0,0,0, · · · ,0, · · · )

)
= 0∏

U fn
(
(0,1, 1

2 , · · · ,
1
n , · · · )

)
= 1.

It follows that
∏
U fn is not well-defined.

19



Ultraproducts
Type spaces

Ultrafilters
Ultraproducts of FO
Ultraproducts of CL
Uniform continuity

Counter Examples

Let U be a nonprincipal ultrafilter on N+.
For each n ∈ N+, define fn : [0,1]→ [0,1] as follows:

fn(x) =

{
nx 0 ≤ x < 1

n
1 1

n ≤ x ≤ 1

These fn’s are uniformly continuous functions, but have
different modulus of uniform continuity ∆fn .
Note that (0,0,0, · · · ,0, · · · ) ∼ (0,1, 1

2 , · · · ,
1
n , · · · ),

since limU 1
n = 0.∏

U fn
(
(0,0,0, · · · ,0, · · · )

)
= 0∏

U fn
(
(0,1, 1

2 , · · · ,
1
n , · · · )

)
= 1.

It follows that
∏
U fn is not well-defined.

19



Ultraproducts
Type spaces

Types
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Functions on type spaces

Definition

LetM |= T and A ⊆ M. Denote L(A)-structure (M,a)a∈A
byMA and denote the theory ThL(A)(MA) by TA.
A set p of L(A)-conditions with n free variables
x = (x1, · · · , xn), is called a (complete) n-type over A if
there exists a modelMA |= TA and e ∈ Mn such that p is
the set of all L(A)-conditions E(x) for whichMA |= E(e).
We denote p by tp(e/A) and say that e realizes p inM.
The collection of all such n-types over A is denoted by
Sn(TA), or simply Sn(A).
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The logic topology on types

Let ϕ(x1, · · · , xn) be an L(A)-formula and let ε > 0.
[ϕ < ε] = {p ∈ Sn(TA) | for some 0 ≤ δ < ε, the condition
(ϕ ≤ δ) ∈ p}.
The logic topology on Sn(TA) is defined as follows:
If p ∈ Sn(TA), then the basic neighborhoods of p are the
set of the form [ϕ < ε] for which the condition ϕ = 0 is in p
and ε > 0.
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Theorem
The logic topolgy on Sn(TA) is compact and Hausdorff.
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The metric topology on types

LetMA be a model of TA such that each type in Sn(TA) is
realized.
For p,q ∈ Sn(TA), we define d(p,q) to be

inf{max
1≤j≤n

d(bj , cj) | MA |= p[b1, · · · ,bn],MA |= q[c1, · · · , cn]}.

Claim The definition of d(p,q) does not depend onMA.
Note that (Sn(TA),d) is a metric space, and d induces a
metric topology on Sn(TA).
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Theorem
On Sn(TA), the metric topology is finer than the logic
topology.

Theorem
The metric space (Sn(TA),d) is complete.
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Ryll-Nardzewski Theorem-continuous versoin

Theorem (Henson)
Let T be a complete countable theory. Then the following are
equivaent:

1 T is separably categorical, i.e., T has a unique separable
model up to isomorphism.

2 For each n, the metric space (Sn(T ),d) is compact.
3 For each n, the logic topology and the metric topology

coincide on Sn(T ).
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Separably categorical theories

The following theories are separably categorical:
The theory of infinite dimensional Hilbert spaces.
The theory of the Urysohn sphere.
The theory of atomless probabilty algebras.
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Functions on type spaces

LetMA be a model of TA in which every type in Sn(TA) is
realized for each n ≥ 1.
Let ϕ(x1, · · · , xn) be an L(A)-formula.
For each p ∈ Sn(TA), define ϕ̃ = r , where r is the unique
real number such that ϕ = r is in p.
Equivalently, ϕ̃(p) = ϕMA(b) where b |= p.
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Theorem
Let ϕ(x) be an L(A)-formula. Then ϕ̃ : Sn(TA)→ [0,1] is
continuous with respect to the logic topology and uniformly
continuous with respect to the metric topology.
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Thanks!!

Thanks for your attention!
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