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Continuous logic, a.k.a., continuous first order logic,
continuous model theory, model theory for metric
structures.
The truth values are not just {T ,F}, but [0,1].
The quantifiers are inf and sup.
Chang and Keisler’s continuous model theory in the 1960s
and Łukasiewicz logic were the early attempts to deal with
non-classical logic.
Chang and Keisler, Continuous model theory, Ann. of
Math. Stud., No. 58, Princeton University Press, Princeton,
NJ, 1966. xii+166 pp.
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Background

1972 Dacunha-Castelle and Krivine, Applications des
ultraproduits à l’étude des espaces et des algèbres de
Banach, Studia Math. 41 (1972), 315–334.

1976 Henson, Nonstandard hulls of Banach spaces, Israel J.
Math. 25 (1976), 108–144.
Henson’s logic; positive bounded formulas with an
approximate semantics.

1981 Krivine and Maurey, Espaces de Banach stables, Israel J.
Math. 39 (1981), 273–295.
Every infinite dimensional stable Banach space contains
lp, for some p, 1 ≤ p <∞.

2002 Henson and Iovino, Ultraproducts in analysis, Analysis and
logic (Mons, 1997), 1–110, London Math. Soc., Lecture
Note Ser., 262, Cambridge University Press, Cambridge,
2002.
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Modern continuous logic

2003 Ben Yaacov, Positive model theory and compact abstract
theories, J. Math. Log. 3 (2003), 85–118.

2010 Ben Yaacov and Usvyatsov, Continuous first order logic
and local stability, Trans. Amer. Math. Soc. 362 (2010),
5213–5259.

2008 Ben Yaacov, Berenstein, Henson and Usvyatsov, Model
theory for metric structures, in Model Theory with
Applications to Algebra and Analysis, Vol. II, Lectures
Notes series of the London Mathematical Society, No.350,
Cambridge University Press, 2008, 315–427.
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Some history

1930s Compactness Theorem, Ultraproducts, Saturation
1960s Ax-Kochen, Ershov, Diophantine problems over local fields

Abraham Robinson, Nonstandard analysis
1970s Shelah, Classification Theory, Stability Theory
1996 Hrushovski, Mordell-Lang conjecture

1980s O-minimal Theory
2011 Pila, André-Oort conjecture

2000s Continuous Logic
2020s Major breakthrough?
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Metric structures

Let (M,d) be a complete bounded metric space.
A predicate on M is a uniformly continuous function from
Mn to IP = [a,b] ⊆ R, for some n ≥ 1.
P : Mn → R is uniformly continuous if

∀ε > 0∃δ > 0∀x , y ∈ Mn(d(x , y) < δ → |P(x)− P(y)| < ε).

A function on M is a uniformly continuous function from Mn

to M for some n ≥ 1.
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For simplicity, (M,d) is bounded by 1, and predicates have
values on [0,1], the truth values.
In first order logic, predicates Mn → {0,1}.
In continuous logic, predicates Mn → [0,1].
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Definition

A metric structureM based on complete bounded metric
space (M,d) consists of a family of (Pi | i ∈ I) of predicates on
M, a family of (Fj | j ∈ J) of functions on M, and a family of
(ak | k ∈ K ) of distinguished elements of M.

We denote a metric structure as

M = (M,Pi ,Fj ,ak | i ∈ I, j ∈ J, k ∈ K ).
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Examples

1 A complete bounded metric space (M,d) with no
additional structures.

2 Given a first order structureM. Define a discrete metric on
M by d(a,b) = 1 if a 6= b, and d(a,b) = 0 if a = b. Then,
M becomes a metric structure.
This example shows that continuous logic is a
generalization of first order logic.

3 Probability algebras are boolean algebras of events in
probability space. We will discuss it further later.
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Classical Logic and Continuous Logic

classical logic continuous logic
truth values {T ,F} = {0,1} [0,1]

quantifiers ∀x , ∃x sup x , inf x
functions Mn → M Mn → M

predicates Mn → {0,1} Mn → [0,1]

connectives {0,1}n → {0,1} [0,1]n → [0,1]

equality x = y d(x , y) = 0

10
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Signature

A signature or language L for continuous logic consists of
symbols for constants, functions, and predicates, as usual.

constant symbols: interpreted as distinguished elements of
M.
m-ary function symbols: interpreted as functions
f : Mm → M.
n-ary predicate symbols: interpreted as functions
P : Mn → IP .

L specifies a modulus of uniform continuity for each
function symbol and each predicate symbol; more details
on next slide.
The metric is considered as a binary predicate (exactly as
equality is used in classical logic).
L provides DL, the diameter of (M,d), and bounded
interval IP for each predicate P.
For simplicity, assume DL = 1 and IP = [0,1].
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Modulus of uniform continuity

For a function symbol f , the modulus of uniform continuity
is a function ∆f : (0,1]→ (0,1] satisfying ∀ε > 0
∀x , y ∈ Mn, if d(x , y) < ∆f (ε) then d(f (x), f (y)) < ε.
For a predicate symbol P, the modulus of uniform
continuity ∆P is defined similarly.
The modulus of uniform continuity can be arranged to be
an increasing continuous function ∆: (0,1]→ (0,1] so that
limt→0 ∆(t) = 0.
Why uniform continuity is so important?
Ultraproduct constructions.
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Terms and Formulas

Terms: Terms are formed inductively, exactly as in
first-order logic. Each variable and constant symbol is an
L-term. If f is an n-ary function symbol and t1, · · · , tn are
L-terms, then f (t1, · · · , tn) is an L-term. All L-terms are
constructed in this way.
Atomic formulas: The expressions of the form P(t1, · · · , tn),
in which P is an n-ary predicate symbol of L and t1, · · · , tn
are L-terms; as well as d(t1, t2), in which t1 and t2 are
L-terms.
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Formulas

The class of L-formulas is the smallest class of expressions
satisfying the following requirements:

Atomic formulas of L are L-formulas.
If u : [0,1]n → [0,1] is continuous and ϕ1, · · · , ϕn are
L-formulas, then u(ϕ1, · · · , ϕn) is an L-formula.
If ϕ is an L-formula and x is a variable, then supx ϕ and
infx ϕ are L-formulas.

The closed formulas are called sentences.

14
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Remark

So far, the definition of formulas is not a good one.
Too general.
There are uncountably many continuous functions; a
dense subset will be enough.
Too restrict.
Need formulas closed under taking certain limits, in order
to develop a good notion of “definibility".
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Semantics
Theories

A motivation example

Example

Let D0 be the set of repeating decimals. Then (D0,d) is a
pseudometric space.

d(0.9̇,1) = 0, but 0.9̇ 6= 1.
Consider (D,d) = (D0,d)/ ∼, where x ∼ y if d(x , y) = 0.
Then (D,d) is a metric space, but it is not complete.
Take its completion to get (D̄,d).
Note that (D,d) = (Q,d), and (D̄,d) = (R,d).
This example shows that how to start with a pseudometric
space, to get a metric space, and a complete metric space.
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Prestructures

Fix a signature L. Let (M0,d) be a pseudometric space,
satisfying diam(M0,d) ≤ DL.

An L-prestructureM0 based on (M0,d) is a structure
satisfying:

1 for each predicate symbol P of L, PM0 : Mn
0 → IP has ∆P

as a modulus of uniform continuity.
2 for each function symbol f of L, fM0 : Mm

0 → M0 has ∆f as
a modulus of uniform continuity.

3 for each constant symbol c of L, cM0 ∈ M0.
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Quotients

Given an L-prestructureM0, we define its quotient as follows:
1 Let (M,d) = (M0,d)/ ∼, where x ∼ y iff d(x , y) = 0.
2 Let π : M0 → M be the quotient map. Then
(i) for each predicate symbol P, define PM : Mn → IP by

PM(π(x1), · · · , π(xn)) = PM0(x1, · · · , xn) for all x ∈ Mn
0 .

(ii) for each function symbol f , define fM : Mm → M by
fM(π(x1), · · · , π(xm)) = π

(
fM0(x1, · · · , xm)

)
for all x ∈ Mm

0 .
(iii) for each constant synbol c, define cM = π(cM0).

3 ThenM is an L-prestructure with the same DL, ∆P , and
∆f ; (M,d) is a (possibly incomplete) metric space.
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Completion

Finally, we take the completion ofM to get an L-structure N .
1 for each P, define PN : Nn → IP as the unique extension of

PM with the same ∆P .
2 for each f , define fN : Nm → N as the unique extension of

fM with the same ∆f .
3 for each c, define cN = cM.

Then (N,d) is a bounded complete metric space and call N an
L-structure.
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Semantics

LetM be an L-prestructure, and let A ⊆ M. We extend L
to a signature L(A) by adding new constant symbols c(a)
for all a ∈ A.
Interpret c(a)M = a for each a ∈ A.
Consider an L(M)-term t(x1, · · · , xn). Define tM : Mn → M
exactly as in first order logic to interpret t inM.
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Key definition of semantics in continuous logic

1 (d(t1, t2))M = dM(tM1 , tM2 ) for all terms t1, t2.
2 (P(t1, · · · , tn))M = PM(tM1 , · · · , tMn ) for all predicates P

and terms t1, · · · , tn.
3 for all L(M)-sentences σ1, · · · , σn and all continuous

functions u : [0,1]n → [0,1],

(u(σ1, · · · , σn))M = u(σM1 , · · · , σMn ).

4 for all L(M)-formulas ϕ(x),

(sup
x
ϕ(x))M = sup

a∈M
{ϕ(a)M},

(inf
x
ϕ(x))M = inf

a∈M
{ϕ(a)M}.
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Let ϕ(x) be an L(M)-formula. Let ϕM denote the function
Mn → [0,1] defined by

ϕM(a) = (ϕ(a))M

for all a ∈ Mn.

Fact

ϕM is a uniformly continuous function.

Note that uniform continuity is very tricky here.

22



Background
Metric structures

Syntax
Semantics

L-structures
Semantics
Theories

Let ϕ(x) be an L(M)-formula. Let ϕM denote the function
Mn → [0,1] defined by

ϕM(a) = (ϕ(a))M

for all a ∈ Mn.

Fact

ϕM is a uniformly continuous function.

Note that uniform continuity is very tricky here.

22



Background
Metric structures

Syntax
Semantics

L-structures
Semantics
Theories

Let ϕ(x) be an L(M)-formula. Let ϕM denote the function
Mn → [0,1] defined by

ϕM(a) = (ϕ(a))M

for all a ∈ Mn.

Fact

ϕM is a uniformly continuous function.

Note that uniform continuity is very tricky here.

22



Background
Metric structures

Syntax
Semantics

L-structures
Semantics
Theories

Logical equivalence

Two L-formulas ϕ(x) and ψ(x) are logical equivalent if

ϕM(a) = ψM(a)

for each L-structureM and each a ∈ Mn.
Then we can define the logical distance between ϕ(x) and
ψ(x) by

dL(ϕ(x), ψ(x)) = sup
M

sup
a∈Mn

|ϕM(a)− ψM(a)|.

Note that the logical distance is a pseudometric between
formulas, and dL(ϕ(x), ψ(x)) = 0 iff ϕ(x) and ψ(x) are
logical equivalent.

23



Background
Metric structures

Syntax
Semantics

L-structures
Semantics
Theories

Logical equivalence

Two L-formulas ϕ(x) and ψ(x) are logical equivalent if

ϕM(a) = ψM(a)

for each L-structureM and each a ∈ Mn.
Then we can define the logical distance between ϕ(x) and
ψ(x) by

dL(ϕ(x), ψ(x)) = sup
M

sup
a∈Mn

|ϕM(a)− ψM(a)|.

Note that the logical distance is a pseudometric between
formulas, and dL(ϕ(x), ψ(x)) = 0 iff ϕ(x) and ψ(x) are
logical equivalent.

23



Background
Metric structures

Syntax
Semantics

L-structures
Semantics
Theories

Logical equivalence

Two L-formulas ϕ(x) and ψ(x) are logical equivalent if

ϕM(a) = ψM(a)

for each L-structureM and each a ∈ Mn.
Then we can define the logical distance between ϕ(x) and
ψ(x) by

dL(ϕ(x), ψ(x)) = sup
M

sup
a∈Mn

|ϕM(a)− ψM(a)|.

Note that the logical distance is a pseudometric between
formulas, and dL(ϕ(x), ψ(x)) = 0 iff ϕ(x) and ψ(x) are
logical equivalent.

23



Background
Metric structures

Syntax
Semantics

L-structures
Semantics
Theories

Definable predicates

A mapping P : Mn → [0,1] is a definable predicate inM
over A, if there is a sequence (ϕk (x) | k ∈ N) of
L(A)-formulas such that ϕM

k (x) ⇒ P(x) on Mn.
Then the space of all definable predicates Mn → [0,1] is
the closure under the logical distance of the space of all
L(A)-formulas with n free variables.
This shows that the connectives are too restricted.
Definable predicates could be considered as “L-formulas".
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Size of the space of L-formulas

The space of L-formulas is too big, since there are
uncountably many connectives.
We could consider the density character of the space,
which is the smallest dense subset with respect to the
logical distance between L-formulas.
By Stone-Weierstrass Theorem, there is a countable set of
functions [0,1]n → [0,1] that is dense in the set of all
continuous functions with respect to sup-distance. We may
use this countable set of functions to build formulas, called
restricted formulas.
The size of restricted formulas is ≤ Card(L).
Every L-formula can be approximated arbitrarily closely in
logical distance by a restricted formula.
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use this countable set of functions to build formulas, called
restricted formulas.
The size of restricted formulas is ≤ Card(L).
Every L-formula can be approximated arbitrarily closely in
logical distance by a restricted formula.
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Connectives

The set C([0,1]n, [0,1]) is uncountable, we would rather
consider a countable dense subset of C([0,1]n, [0,1]). The
following 3 connectives can generate a dense family of
connectives.

¬x = 1− x
x −· y = max{x − y ,0}
1
2x = x/2

e.g.
x ∧ y = min{x , y} = x −· (x −· y)

x ∨ y = max{x , y} = ¬x(¬x ∧ ¬y)

|x − y | = (x −· y) ∨ (y −· x)
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Conditions

Conditions: An L-condition E is a formal expression of the
form ϕ = 0, where ϕ is an L-formula.
Closed conditions: We call a condition E is closed if ϕ is a
sentence.
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Theory

Definition
A theory in L is a set of closed L-conditions. If T is a theory
in L and M is an L-structure, we say that M is a model of T
and write M |= T if M |= E for every condition E in T .
If M is an L-structure, the theory of M, denoted by Th(M),
is the set of closed L-conditions that are true in M. If T is a
theory of this form, it will be called complete.
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A continuous model theory has compactness theorem,
Löwenheim-Skolem theorem and existence of saturated and
homogeneous models as classic model theory.
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Thanks!!

Thanks for your attention!
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