Introd	uction

Cantwell's Framework

onclusion F

References

Multi-Agent Simulative Belief Ascription

Min Cheol Seo*

^{*}Ph.D. Candidate Department of Philosophy Sungkyunkwan University

2025 Korea Logic Day

▶ < ∃ >

Cantwell's Framework

References

Table of Contents

- 2 Multi-Agent Frameworks
- 3 Cantwell's Framework

臣

Introduction \odot	Multi-Agent Frameworks	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion 00	References	
Multi-Agent Belief Interaction						

 Multi-agent epistemic logic is a useful tool for understanding how agents reason about each other's beliefs, knowledge, and intentions. It underpins solution strategies in game theory [4, 5], distributed systems [9, 10], and AI by modelling how uncertainty and interactive decision-making unfold.

Introduction $\bullet \circ$	Multi-Agent Frameworks	Cantwell's Framework 00000	Masba 00000000000000000000000000000000000	Conclusion 00	References
Multi-Agent Bel	ief Interaction				

- Multi-agent epistemic logic is a useful tool for understanding how agents reason about each other's beliefs, knowledge, and intentions. It underpins solution strategies in game theory [4, 5], distributed systems [9, 10], and AI by modelling how uncertainty and interactive decision-making unfold.
- Real-life scenarios require agents to reason not only about what others believe but sometimes about what they *would* believe under different circumstances.

Introduction	Multi-Agent Frameworks	Cantwell's Framework	Masba	Conclusion	References
○●	0000	00000	00000000000000000000000000000000000	00	
Mult: Amert Cir					

- 4 ⊒ →

Introduction ○●	Multi-Agent Frameworks 0000	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion 00	References			
Multi Agent Sir	Aulti Agent Simulative Interaction							

"What A would believe if A were me",

Introduction	Multi-Agent Frameworks	Cantwell's Framework	Masba	Conclusion	References	
○●	0000	00000	00000000000000000000000000000000000	00		
Multi Arrest Simulative Internation						

"What A would believe if A were me", or *vice versa.* Consider the following scenario:

Introduction	Multi-Agent Frameworks	Cantwell's Framework	Masba	Conclusion	References
○●	0000	00000	00000000000000000000000000000000000	00	
Mult: Americ Cim					

"What A would believe if A were me", or *vice versa*. Consider the following scenario:

A: "I do not like those who make the room messy".

Introduction ○●	Multi-Agent Frameworks 0000	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion 00	References

There are numerous ways we do this, but the most frequently occurring real-life scenarios might be:

"What A would believe if A were me",

or vice versa. Consider the following scenario:

- A: "I do not like those who make the room messy".
- B : 'A does not like people who make the room messy, and I am one of them'.

ntroduction	Multi-Agent Frameworks	Cantwell's Framework	Masba	Conclusion	References
00					

There are numerous ways we do this, but the most frequently occurring real-life scenarios might be:

"What A would believe if A were me",

or vice versa. Consider the following scenario:

- A: "I do not like those who make the room messy".
- B : 'A does not like people who make the room messy, and I am one of them'.
- B : "So A does not like me".

There are numerous ways we do this, but the most frequently occurring real-life scenarios might be:

"What A would believe if A were me",

or vice versa. Consider the following scenario:

- A: "I do not like those who make the room messy".
- B : 'A does not like people who make the room messy, and I am one of them'.
- B : "So A does not like me".
- B : Says to C, "A does not like me".

There are numerous ways we do this, but the most frequently occurring real-life scenarios might be:

"What A would believe if A were me",

or vice versa. Consider the following scenario:

- A: "I do not like those who make the room messy".
- B : 'A does not like people who make the room messy, and I am one of them'.
- B : "So A does not like me".
- B : Says to C, "A does not like me".

In the above scenario, we see what I will call *simulative belief ascription*. [13, 14] By definition, the ascribee does not genuinely hold such a belief; the ascriber merely treats it *as if* the ascribee did.

A E > A E >

Introduction 00	Multi-Agent Frameworks ●○○○	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion	References	
Possible Approaches						

Introduction	Multi-Agent Frameworks	Cantwell's Framework	Masba	Conclusion	References
00	●○○○	00000	00000000000000000000000000000000000	00	
Possible Approa	ches				

Pragmatics,

Introduction 00	Multi-Agent Frameworks ●○○○	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion 00	References
Possible Approa	ches				

Pragmatics,

Standard (Kripke-Hintikka) multi-agent modal logic,

Introduction 00	Multi-Agent Frameworks ●○○○	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion 00	References
Possible Approa	ches				

Pragmatics,

- Standard (Kripke-Hintikka) multi-agent modal logic,
- Multi-Agent AGM framework.

Introduction 00	Multi-Agent Frameworks ○●○○	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion 00	References
Pragmatics					

Pragmatics treats simulative belief ascription as a linguistic or conversational convenience. This may be the *easiest* approach to simulative belief ascriptions.

Introduction 00	Multi-Agent Frameworks ○●○○	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion 00	References
Pragmatics					

Pragmatics treats simulative belief ascription as a linguistic or conversational convenience. This may be the *easiest* approach to simulative belief ascriptions.

Problem(s):

Introduction 00	Multi-Agent Frameworks ○●○○	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion 00	References
Pragmatics					

Pragmatics treats simulative belief ascription as a linguistic or conversational convenience. This may be the *easiest* approach to simulative belief ascriptions.

Problem(s):

• While pragmatics helps us understand *why* we do this *conventionally*, it does not offer a *computationally robust* framework.

Multi-Agent Frameworks ○○●○ Cantwell's Framework

Conclusion References

Kripke-Hintikka Framework

In the standard **Kripke-Hintikka** style (multi-agent) epistemic logic, an agent's beliefs are represented by an accessibility relation R on a set of possible worlds, $W = \{w_1, w_2, \ldots, w_n\}$. "Agent i believes p" is true at world w if p holds in all R_i -accessible worlds from w.

Multi-Agent Frameworks ○○●○ Cantwell's Framework

Conclusion References

Kripke-Hintikka Framework

In the standard **Kripke-Hintikka** style (multi-agent) epistemic logic, an agent's beliefs are represented by an accessibility relation R on a set of possible worlds, $W = \{w_1, w_2, \ldots, w_n\}$. "Agent i believes p" is true at world w if p holds in all R_i -accessible worlds from w.

Problems:

Multi-Agent Frameworks

Cantwell's Framework

Conclusion References

Kripke-Hintikka Framework

In the standard **Kripke-Hintikka** style (multi-agent) epistemic logic, an agent's beliefs are represented by an accessibility relation R on a set of possible worlds, $W = \{w_1, w_2, \ldots, w_n\}$. "Agent i believes p" is true at world w if p holds in all R_i -accessible worlds from w.

Problems:

• Simulative Operation: No formal distinction between an agent's *actual* beliefs and *simulative* beliefs the ascriber imposes.

Multi-Agent Frameworks

Cantwell's Framework

Conclusion References

Kripke-Hintikka Framework

In the standard **Kripke-Hintikka** style (multi-agent) epistemic logic, an agent's beliefs are represented by an accessibility relation R on a set of possible worlds, $W = \{w_1, w_2, \ldots, w_n\}$. "Agent i believes p" is true at world w if p holds in all R_i -accessible worlds from w.

Problems:

- Simulative Operation: No formal distinction between an agent's *actual* beliefs and *simulative* beliefs the ascriber imposes.
- Fixed Access Relation: The agent's doxastic possibilities are typically held fixed in a single model.

* E > * E >

Multi-Agent Frameworks

Cantwell's Framework

Conclusion References

Kripke-Hintikka Framework

In the standard **Kripke-Hintikka** style (multi-agent) epistemic logic, an agent's beliefs are represented by an accessibility relation R on a set of possible worlds, $W = \{w_1, w_2, \ldots, w_n\}$. "Agent i believes p" is true at world w if p holds in all R_i -accessible worlds from w.

Problems:

- **Simulative Operation**: No formal distinction between an agent's *actual* beliefs and *simulative* beliefs the ascriber imposes.
- Fixed Access Relation: The agent's doxastic possibilities are typically held fixed in a single model.
- Introspection and Revision: Revising an agent's beliefs requires building a new (or globally modified) accessibility relation, or a new model altogether.

イロト イヨト イヨト

Introduction 00	Multi-Agent Frameworks ○○○●	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion 00	References
Multi-Agent AG	M Framework				

Introduction 00	Multi-Agent Frameworks ○○○●	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion 00	References
Multi-Agent AG	M Framework				

Problems:

Problems:

• **Simulative Operation**: Again, AGM is geared towards *genuine* beliefs, not *simulative* ones.

Problems:

- **Simulative Operation**: Again, AGM is geared towards *genuine* beliefs, not *simulative* ones.
- Iterated Belief: AGM primarily handles one-shot revision. It does not prescribe how beliefs evolve across multiple or nested updates.

4 ∃ ≥ < 3 ≥ </p>

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework ●○○○○	Masba 00000000000000000000000000000000000	Conclusion	References
Gerbrandy and (Groeneveld				

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework ●○○○○	Masba 00000000000000000000000000000000000	Conclusion	References
Gerbrandy and G	roeneveld				

Here, $u \in U$ determines the belief-independent features of the world, and b_i is a set of *worlds* validating agent *i*'s belief state.

Gerbrandy and Groeneveld	Introduction 00	Multi-Agent Frameworks 0000	Cantwell's Framework ●○○○○	Masba 00000000000000000000000000000000000	Conclusion 00	References
	Gerbrandy and	Groeneveld				

Here, $u \in U$ determines the belief-independent features of the world, and b_i is a set of *worlds* validating agent *i*'s belief state.

Problem(s):

Introduction 00	Multi-Agent Frameworks 0000	Cantwell's Framework ●○○○○	Masba 00000000000000000000000000000000000	Conclusion 00	References
Gerbrandy and	Groeneveld				

Here, $u \in U$ determines the belief-independent features of the world, and b_i is a set of *worlds* validating agent *i*'s belief state.

Problem(s):

• b_i is a set of *worlds*, which may even contain *w* itself.

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework ●○○○○	Masba 00000000000000000000000000000000000	Conclusion 00	References
Gerbrandy and	Groeneveld				

Here, $u \in U$ determines the belief-independent features of the world, and b_i is a set of *worlds* validating agent *i*'s belief state.

Problem(s):

• b_i is a set of *worlds*, which may even contain *w* itself. **Solutions**:

Introduction 00	Multi-Agent Frameworks 0000	Cantwell's Framework ●○○○○	Masba 00000000000000000000000000000000000	Conclusion	References
Gerbrandy and (Groeneveld				

Here, $u \in U$ determines the belief-independent features of the world, and b_i is a set of *worlds* validating agent *i*'s belief state.

Problem(s):

• b_i is a set of *worlds*, which may even contain *w* itself. Solutions:

• Aczel's Anti-Foundation Axiom [1, 1988](non-wellfounded set theory).

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework ●○○○○	Masba 00000000000000000000000000000000000	Conclusion 00	References				
Gerbrandy and Groeneveld									

Here, $u \in U$ determines the belief-independent features of the world, and b_i is a set of *worlds* validating agent *i*'s belief state.

Problem(s):

• b_i is a set of *worlds*, which may even contain *w* itself.

Solutions:

- Aczel's Anti-Foundation Axiom [1, 1988](non-wellfounded set theory).
- *Bisimilarity* to the Kripke-Hintikka model.

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework ○●○○○	Masba 00000000000000000000000000000000000	Conclusion 00	References				
Cantwell's Approach									

Cantwell [7, 2005] (and [8, 2007]) adopted Gerbrandy and Groeneveld's idea but developed a framework that does not rely on *non-wellfounded sets*. Crucially, the framework preserves a *modular representation* of possible worlds as (n + 1)-tuples, $\langle u, b_1, b_2, \ldots, b_n \rangle$, where u determines belief-independent facts, and b_1, \ldots, b_n represent each agent's belief state.
Introduction 00	Multi-Agent Frameworks 0000	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion	References		
Cantwell's Approach							

Cantwell [7, 2005] (and [8, 2007]) adopted Gerbrandy and Groeneveld's idea but developed a framework that does not rely on *non-wellfounded sets*. Crucially, the framework preserves a *modular representation* of possible worlds as (n + 1)-tuples, $\langle u, b_1, b_2, \ldots, b_n \rangle$, where u determines belief-independent facts, and b_1, \ldots, b_n represent each agent's belief state.

This neatly represents *local changes* in the belief state of a single agent, e.g. from $\langle u, b_1, b_2, b_3 \rangle$ to $\langle u, b'_1, b_2, b_3 \rangle$, without altering u (the belief-external facts) or other agents' states.

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework ○○●○○	Masba 00000000000000000000000000000000000	Conclusion 00	References
n-Agent Framew	vork ${\cal F}$				

< ∃ >

臣

Introduction	Multi-Agent Frameworks	Cantwell's Framework	Masba	Conclusion	References
00	0000	○○●○○	00000000000000000000000000000000000	00	
<i>n</i> -Agent Framev	vork ${\cal F}$				

 \mathcal{A} is the set of agents, labelled $1, \ldots, n \in \mathcal{A}$,

ㅋ> ㅋ

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework ○○●○○	Masba 00000000000000000000000000000000000	Conclusion 00	References
<i>n</i> -Agent Framew	vork ${\cal F}$				

 $\mathcal A$ is the set of agents, labelled $1,\ldots,n\in\mathcal A$,

U is the set of belief-independent states of the world,

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion 00	References
<i>n</i> -Agent Framew	vork ${\cal F}$				

 $\mathcal A$ is the set of agents, labelled $1,\ldots,n\in\mathcal A$,

- U is the set of belief-independent states of the world,
- \mathcal{B}_i is the set of possible belief states for agent i,¹

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework ○○●○○	Masba 00000000000000000000000000000000000	Conclusion 00	References
<i>n</i> -Agent Framew	vork ${\cal F}$				

 $\mathcal A$ is the set of agents, labelled $1,\ldots,n\in\mathcal A$,

U is the set of belief-independent states of the world,

 \mathcal{B}_i is the set of possible belief states for agent i, 1

A possible world $w \in W$ is an ordered (n+1)-tuple

 $w = \langle u, b_1, \dots, b_n \rangle$, with $u \in U$, and $b_i \in \mathcal{B}_i$ for each i,

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework ○○●○○	Masba 00000000000000000000000000000000000	Conclusion 00	References
<i>n</i> -Agent Framew	vork ${\cal F}$				

 $\mathcal A$ is the set of agents, labelled $1,\ldots,n\in\mathcal A$,

U is the set of belief-independent states of the world,

 \mathcal{B}_i is the set of possible belief states for agent i,¹

A *possible world* $w \in W$ is an ordered (n + 1)-tuple

 $w = \langle u, b_1, \dots, b_n \rangle$, with $u \in U$, and $b_i \in \mathcal{B}_i$ for each i,

C is a function returning, for any agent i and $b \in B_i$, a set of possible worlds.

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion 00	References		
n-Agent Framework ${\cal F}$							

For a world
$$w = \langle u, b_1, \ldots, b_n \rangle$$
,

$$wst(w) = u$$
 (gives the *world-state* of w),
 $bst_i(w) = b_i$ (gives the *belief state* of agent *i* in w).

・ロト・西ト・ヨト・ヨー 今への

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework ○○○●○	Masba 00000000000000000000000000000000000	Conclusion 00	References	
n-Agent Framework ${\cal F}$						

For a world
$$w = \langle u, b_1, \ldots, b_n \rangle$$
,

$$wst(w) = u$$
 (gives the *world-state* of w),
 $bst_i(w) = b_i$ (gives the *belief state* of agent *i* in w).

A full-introspection postulate:

If
$$b \in \mathcal{B}_i$$
 and $w \in \mathcal{C}(b)$, then $bst_i(w) = b$.

토 > 토

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework ○○○●○	Masba 00000000000000000000000000000000000	Conclusion 00	References		
n -Agent Framework ${\cal F}$							

For a world
$$w = \langle u, b_1, \ldots, b_n \rangle$$
,

$$wst(w) = u$$
 (gives the *world-state* of w),
 $bst_i(w) = b_i$ (gives the *belief state* of agent *i* in w).

A full-introspection postulate:

If
$$b \in \mathcal{B}_i$$
 and $w \in \mathcal{C}(b)$, then $bst_i(w) = b$.

An *n*-agent frame \mathcal{F} can be defined as a tuple

 $\langle W, U, \{\mathcal{B}_i\}_{1 \leq i \leq n}, \mathcal{C} \rangle.$

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework ○○○●○	Masba 00000000000000000000000000000000000	Conclusion 00	References	
n -Agent Framework ${\cal F}$						

For a world
$$w = \langle u, b_1, \ldots, b_n \rangle$$
,

$$wst(w) = u$$
 (gives the *world-state* of w),
 $bst_i(w) = b_i$ (gives the *belief state* of agent *i* in w).

A full-introspection postulate:

If
$$b \in \mathcal{B}_i$$
 and $w \in \mathcal{C}(b)$, then $bst_i(w) = b$.

An *n*-agent frame \mathcal{F} can be defined as a tuple

$$\langle W, U, \{\mathcal{B}_i\}_{1\leq i\leq n}, \mathcal{C} \rangle.$$

In his 2005 paper, Cantwell showed \mathcal{F} can be represented by a standard Kripke system with *n* accessibility relations.

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework ○○○○●	Masba 00000000000000000000000000000000000	Conclusion 00	References
n-Agent Framev	vork ${\cal F}$				

Introduction	Multi-Agent Frameworks	Cantwell's Framework	Masba	Conclusion	References
00	0000	○○○○●	00000000000000000000000000000000000	00	
<i>n</i> -Agent Framev	vork ${\cal F}$				

Expansion: $+_i(\phi, w) = w'$, adding ϕ to agent *i*'s beliefs in w, moving to a new world w'.

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework ○○○○●	Masba 00000000000000000000000000000000000	Conclusion 00	References
<i>n</i> -Agent Framew	vork ${\cal F}$				

Expansion: $+_i(\phi, w) = w'$, adding ϕ to agent *i*'s beliefs in w, moving to a new world w'.

Selection: $\gamma_b(\phi) \subseteq \phi$, choosing the most plausible ϕ -worlds consistent with b_i ,

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework ○○○○●	Masba 00000000000000000000000000000000000	Conclusion	References
<i>n</i> -Agent Framev	vork ${\cal F}$				

Expansion: $+_i(\phi, w) = w'$, adding ϕ to agent *i*'s beliefs in w, moving to a new world w'.

Selection: $\gamma_b(\phi) \subseteq \phi$, choosing the most plausible ϕ -worlds consistent with b_i ,

Common Learning: $\bigoplus_N(\phi, w)$, for a group $N \subseteq \{1, \ldots, n\}$, so they all learn ϕ , each updating their own beliefs.

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework ○○○○●	Masba 00000000000000000000000000000000000	Conclusion 00	References
<i>n</i> -Agent Framev	vork ${\cal F}$				

Expansion: $+_i(\phi, w) = w'$, adding ϕ to agent *i*'s beliefs in w, moving to a new world w'.

Selection: $\gamma_b(\phi) \subseteq \phi$, choosing the most plausible ϕ -worlds consistent with b_i ,

Common Learning: $\bigoplus_N(\phi, w)$, for a group $N \subseteq \{1, \ldots, n\}$, so they all learn ϕ , each updating their own beliefs.

The modular internal-world semantics for common learning is then combined with an AGM-style revision approach.

Introduction 00 Cantwell's Framework

Masba •••••• onclusion References

Introducing the Framework

MASBA is an extension of \mathcal{F} . The key addition is the *simulation layer*—"what *i* would believe if *i* were *j*":

臣

Introduction Multi-Agent F

Cantwell's Framework

Masba ••••• Conclusion References

Introducing the Framework

MASBA is an extension of \mathcal{F} . The key addition is the *simulation layer*—"what *i* would believe if *i* were *j*":

$$\mathcal{B}^{sim}_{\langle i,j
angle}, \ \ b_{\langle i,j
angle}\in \mathcal{B}^{sim}_{\langle i,j
angle},$$

which denotes *i*'s simulative belief states about *j*. An initial step in constructing such simulative states occurs after *common learning*, conceptually

$$w \xrightarrow{\oplus_N(\phi)} w' \xrightarrow{\mathsf{UpdSim}(\phi)} w''.$$

ヨト イヨト

Introduction

Multi-Agent Frameworks

Cantwell's Framework

Masba •••••••••••••••••••••

References Conclusion

Introducing the Framework

MASBA is an extension of \mathcal{F} . The key addition is the *simulation layer*—"what *i* would believe if *i* were *j*":

$$\mathcal{B}^{sim}_{\langle i,j
angle}, \ \ b_{\langle i,j
angle}\in \mathcal{B}^{sim}_{\langle i,j
angle},$$

which denotes i's simulative belief states about j. An initial step in constructing such simulative states occurs after common learning, conceptually

$$w \xrightarrow{\oplus_N(\phi)} w' \xrightarrow{\mathsf{UpdSim}(\phi)} w''.$$

We also need a *shared belief state*:

Introduction Multi-Agent Fr 00 0000 Cantwell's Framework

Masba ••••• Conclusion References

Introducing the Framework

MASBA is an extension of \mathcal{F} . The key addition is the *simulation layer*—"what *i* would believe if *i* were *j*":

$$\mathcal{B}^{sim}_{\langle i,j
angle}, \ \ b_{\langle i,j
angle}\in \mathcal{B}^{sim}_{\langle i,j
angle},$$

which denotes *i*'s simulative belief states about *j*. An initial step in constructing such simulative states occurs after *common learning*, conceptually

$$w \xrightarrow{\oplus_N(\phi)} w' \xrightarrow{\mathsf{UpdSim}(\phi)} w''.$$

We also need a *shared belief state*:

$$\mathcal{B}^{sh}_{\langle j,i\rangle}, \ \ b^{sh}_{\langle j,i\rangle} \in \mathcal{B}^{sh}_{\langle j,i\rangle},$$

denoting *shared states* between *j* and *i*, i.e. *i*'s belief about *j*'s belief. Informally, "*j* believes that *i* believes such-and-such".²

²This can arise via a *common sharing dynamic*, assumed always *sincere*, cf. Cantwell.

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework 00000	Masba o∙ooooooooooooooooo	Conclusion 00	References
Introducing the	Framework				

By introducing $\mathcal{B}_{\langle i,i\rangle}^{sh}$ and $\mathcal{B}_{\langle i,j\rangle}^{sim}$, the framework **localises** both shared and simulative beliefs by encapsulating them in separate compartments, preserving each agent's actual belief state \mathcal{B}_i .

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework	Masba o∙ooooooooooooooooo	Conclusion 00	References
Introducing the	Framework				

By introducing $\mathcal{B}_{\langle i,i\rangle}^{sh}$ and $\mathcal{B}_{\langle i,j\rangle}^{sim}$, the framework **localises** both shared and simulative beliefs by encapsulating them in separate compartments, preserving each agent's actual belief state \mathcal{B}_i .

Thus, MASBA is defined:

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework	Masba o●oooooooooooooooooooo	Conclusion 00	References
Introducing the	Framework				

By introducing $\mathcal{B}_{\langle j,i\rangle}^{sh}$ and $\mathcal{B}_{\langle i,j\rangle}^{sim}$, the framework **localises** both shared and simulative beliefs by encapsulating them in separate compartments, preserving each agent's actual belief state \mathcal{B}_i .

Thus, MASBA is defined:

 $\begin{array}{l} \hline \textbf{Definition (1)} \\ \textbf{MASBA is a tuple} \\ & \langle W, U, \{\mathcal{B}_i\}_{1 \leq i \leq n}, \mathcal{B}^{sh}_{\langle j,i \rangle}, \mathcal{B}^{sim}_{\langle i,j \rangle}, \mathcal{C} \rangle. \end{array}$

Introductio 00 Cantwell's Framework 00000 nclusion Refere

Introducing the Framework

As in \mathcal{F} , MASBA can also be represented in a standard Kripke framework via binary accessibility relations:

Э

16 / 37

イロト イボト イヨト イヨト

Cantwell's Framework

 Conclusion References

Introducing the Framework

As in \mathcal{F} , MASBA can also be represented in a standard Kripke framework via binary accessibility relations:

Definition (2)

MASBA generates accessibility relations R_i $(1 \le i \le n)$, where R_i is a binary relation on W such that

$$wR_iw \iff w \in \mathcal{C}(\mathsf{bst}_i(v)).$$

ヨト イヨト

Cantwell's Framework

 Conclusion References

Introducing the Framework

As in \mathcal{F} , MASBA can also be represented in a standard Kripke framework via binary accessibility relations:

Definition (2)

MASBA generates accessibility relations R_i $(1 \le i \le n)$, where R_i is a binary relation on W such that

$$vR_iw \iff w \in \mathcal{C}(\mathsf{bst}_i(v)).$$

Simulative (and shared) belief states can likewise be represented through analogous accessibility relations:

4 ∃ ≥ < 3 ≥ </p>

Cantwell's Framework

 Conclusion References

Introducing the Framework

As in \mathcal{F} , MASBA can also be represented in a standard Kripke framework via binary accessibility relations:

Definition (2)

MASBA generates accessibility relations R_i $(1 \le i \le n)$, where R_i is a binary relation on W such that

$$vR_iw \iff w \in \mathcal{C}(\mathsf{bst}_i(v)).$$

Simulative (and shared) belief states can likewise be represented through analogous accessibility relations:

Definition (3)

In MASBA, the accessibility relation for simulative beliefs $R_{\langle i,j\rangle}$ is a binary relation on W:

$$v R^{sim}_{\langle i,j
angle} w \quad \Longleftrightarrow \quad w \in \mathcal{C}ig(\mathsf{bst}^{sim}_{\langle i,j
angle}(v) ig).$$

2025 Korea Logic Day

Introduction 00 ulti-Agent Frameworks

Cantwell's Framework

 onclusion References

The Language of $\underline{\mathrm{MASBA}}$

The language of MASBA is the usual classical propositional language \mathcal{L} , enhanced with belief operators B_i , $B_{\langle i,i \rangle}^{sh}$, $B_{\langle i,j \rangle}^{sim}$.

Introduction Multi-Agent Frameworks Cantwell's Framework MA 00 0000 0000 0000

 Conclusion References

The Language of MASBA

The language of MASBA is the usual classical propositional language \mathcal{L} , enhanced with belief operators B_i , $B_{\langle i,i \rangle}^{sh}$, $B_{\langle i,j \rangle}^{sim}$.

A model \mathfrak{M} consists of a MASBA structure plus a valuation function V, where for each propositional variable p, $V(p) \subseteq U$. Truth is evaluated at possible worlds:

Conclusion

References

The Language of MASBA

The language of MASBA is the usual classical propositional language \mathcal{L} , enhanced with belief operators B_i , $B_{(i,i)}^{sh}$, $B_{(i,i)}^{sim}$.

A model \mathfrak{M} consists of a MASBA structure plus a valuation function V, where for each propositional variable p, $V(p) \subseteq U$. Truth is evaluated at possible worlds:

•
$$w \vDash p$$
 iff $wst(w) \in V(p)$.

The language of MASBA is the usual classical propositional language \mathcal{L} , enhanced with belief operators B_i , $B_{(i,i)}^{sh}$, $B_{(i,i)}^{sim}$.

A model \mathfrak{M} consists of a MASBA structure plus a valuation function V, where for each propositional variable p, $V(p) \subseteq U$. Truth is evaluated at possible worlds:

•
$$w \vDash p$$
 iff $wst(w) \in V(p)$.

$$w \vDash \phi \land \psi \text{ iff } w \vDash \phi \text{ and } w \vDash \psi.$$

The Language of MASBA

The language of MASBA is the usual classical propositional language \mathcal{L} , enhanced with belief operators B_i , $B_{(i,i)}^{sh}$, $B_{(i,i)}^{sim}$.

A model \mathfrak{M} consists of a MASBA structure plus a valuation function V, where for each propositional variable p, $V(p) \subseteq U$. Truth is evaluated at possible worlds:

•
$$w \vDash p$$
 iff $wst(w) \in V(p)$.

2
$$w \models \phi \land \psi$$
 iff $w \models \phi$ and $w \models \psi$.

$$\bullet w \vDash \neg \phi \text{ iff } w \nvDash \phi.$$

The Language of MASBA

The language of MASBA is the usual classical propositional language \mathcal{L} , enhanced with belief operators B_i , $B_{\langle i,i \rangle}^{sh}$, $B_{\langle i,j \rangle}^{sim}$.

A model \mathfrak{M} consists of a MASBA structure plus a valuation function V, where for each propositional variable p, $V(p) \subseteq U$. Truth is evaluated at possible worlds:

•
$$w \vDash p$$
 iff $wst(w) \in V(p)$.

$$w \vDash \phi \land \psi \text{ iff } w \vDash \phi \text{ and } w \vDash \psi.$$

$$\bullet w \vDash \neg \phi \text{ iff } w \nvDash \phi.$$

• $w \vDash B_i \phi$ iff for each $w' \in C(\text{bst}_i(w)), w' \vDash \phi$.

clusion References

The Language of Masba

The language of MASBA is the usual classical propositional language \mathcal{L} , enhanced with belief operators B_i , $B_{\langle i,i \rangle}^{sh}$, $B_{\langle i,j \rangle}^{sim}$.

A model \mathfrak{M} consists of a MASBA structure plus a valuation function V, where for each propositional variable p, $V(p) \subseteq U$. Truth is evaluated at possible worlds:

•
$$w \vDash p$$
 iff $wst(w) \in V(p)$.

$$e w \vDash \phi \land \psi \text{ iff } w \vDash \phi \text{ and } w \vDash \psi.$$

$$\bullet w \vDash \neg \phi \text{ iff } w \nvDash \phi.$$

• $w \vDash B_i \phi$ iff for each $w' \in C(\text{bst}_i(w)), w' \vDash \phi$.

The Language of Masba

The language of MASBA is the usual classical propositional language \mathcal{L} , enhanced with belief operators B_i , $B_{\langle i,i \rangle}^{sh}$, $B_{\langle i,j \rangle}^{sim}$.

A model \mathfrak{M} consists of a MASBA structure plus a valuation function V, where for each propositional variable p, $V(p) \subseteq U$. Truth is evaluated at possible worlds:

•
$$w \vDash p$$
 iff $wst(w) \in V(p)$.

$$e w \vDash \phi \land \psi \text{ iff } w \vDash \phi \text{ and } w \vDash \psi.$$

$$\bullet w \vDash \neg \phi \text{ iff } w \nvDash \phi.$$

• $w \vDash B_i \phi$ iff for each $w' \in C(\text{bst}_i(w)), w' \vDash \phi$.

$$\bullet w \vDash [\oplus_N \phi] \psi \text{ iff } \oplus_N (\|\phi\|, w) \vDash \psi.$$

•
$$w \vDash B_{\langle i,j \rangle}^{sim} \phi$$
 iff for each $w' \in \mathcal{C}(\mathsf{bst}_{\langle i,j \rangle}^{sim}(w)), w' \vDash \phi$.

Conclusion References

The Language of MASBA

The language of MASBA is the usual classical propositional language \mathcal{L} , enhanced with belief operators B_i , $B_{\langle i,i \rangle}^{sh}$, $B_{\langle i,j \rangle}^{sim}$.

A model \mathfrak{M} consists of a MASBA structure plus a valuation function V, where for each propositional variable p, $V(p) \subseteq U$. Truth is evaluated at possible worlds:

•
$$w \vDash p$$
 iff $wst(w) \in V(p)$.

$$\bullet w \vDash \neg \phi \text{ iff } w \nvDash \phi.$$

•
$$w \vDash B_i \phi$$
 iff for each $w' \in C(\text{bst}_i(w)), w' \vDash \phi$.

6
$$w \models [\bigoplus_N \phi] \psi$$
 iff $\bigoplus_N (\|\phi\|, w) \models \psi$.

•
$$w \vDash B_{\langle i,j \rangle}^{sim} \phi$$
 iff for each $w' \in \mathcal{C}(\mathsf{bst}_{\langle i,j \rangle}^{sim}(w)), w' \vDash \phi$.

•
$$w \vDash B^{sh}_{\langle i,j \rangle} \phi$$
 iff for each $w' \in \mathcal{C}(\mathsf{bst}^{sh}_{\langle i,j \rangle}(w)), w' \vDash \phi$.
Introduction 00	Multi-Agent Frameworks	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion 00	References
Axioms					

The deductive system of MASBA consists of a *KD*45 system for the operator B_i , and a *K* system for $B_{\langle i,i \rangle}^{sh}$ and $B_{\langle i,i \rangle}^{sim}$:

Tautologies,

$$(K) \ B_i(\phi \to \psi) \to (B_i \phi \to B_i \psi), \text{ similarly for } B^{sh}_{\langle i,j \rangle} \text{ and } B^{sim}_{\langle i,j \rangle},$$

- $(D) \neg (B_i \phi \land B_i \neg \phi),$
- $(5) \neg B_i \phi \rightarrow B_i \neg B_i \phi.$

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework	Masba 0000€00000000000000000000000000000000	Conclusion 00	References
Axioms					

The deductive system of MASBA consists of a *KD*45 system for the operator B_i , and a *K* system for $B_{\langle i,i \rangle}^{sh}$ and $B_{\langle i,j \rangle}^{sim}$:

Tautologies,

$$(K) \ B_i(\phi \to \psi) \to (B_i\phi \to B_i\psi), \text{ similarly for } B^{sh}_{\langle i,j \rangle} \text{ and } B^{sim}_{\langle i,j \rangle},$$

$$(D) \neg (B_i \phi \land B_i \neg \phi),$$

$$(4) B_i \phi \rightarrow B_i B_i \phi,$$

$$(5) \neg B_i \phi \rightarrow B_i \neg B_i \phi.$$

The framework is *sound* and *complete*³ showing that MASBA is fully representable in a standard Kripke-Hintikka system.

³A proof will appear on my website soon.

Introd	uction

Cantwell's Framework

 nclusion References

Belief Dynamics

Expansion. For a multi-agent, multi-compartment setup in MASBA, the expansion + is defined:

Э

Introduction 00	Multi-Agent Frameworks 0000	Cantwell's Framework	Masba 00000 00 00000000000000000000000000000	Conclusion 00	References	
Palief Durantice						

$$+_{\langle i,j\rangle}^{sim} (\mathcal{C}(b_{\langle j,i\rangle}^{sh}), w) = w',$$

where:

∃ ⊳

Introduction 00	Multi-Agent Frameworks 0000	Cantwell's Framework	Masba 00000 00 00000000000000000000000000000	Conclusion 00	References	
Palief Durantice						

$$+_{\langle i,j\rangle}^{sim} (\mathcal{C}(b_{\langle j,i\rangle}^{sh}), w) = w',$$

where:

$$\mathsf{bst}^{sim}_{\langle i,j
angle}(w')=\mathsf{bst}^{sim}_{\langle i,j
angle}(w)\ \cup\ \mathcal{C}ig(b^{sh}_{\langle j,i
angle}ig),$$

 $\exists \rightarrow$

Introduction	Multi-Agent Frameworks	Cantwell's Framework	Masba	Conclusion	References	
00	0000	00000	○○○○○●○○○○○○○○○○○	00		

$$+_{\langle i,j\rangle}^{sim} (\mathcal{C}(b_{\langle j,i\rangle}^{sh}), w) = w',$$

where:

$$\mathrm{bst}_{\langle i,j \rangle}^{sim}(w') = \mathrm{bst}_{\langle i,j \rangle}^{sim}(w) \cup \mathcal{C}(b_{\langle j,i \rangle}^{sh}),$$

 $\mathrm{wst}(w') = \mathrm{wst}(w),$

 $\exists \rightarrow$

Introduction	Multi-Agent Frameworks	Cantwell's Framework	Masba	Conclusion	References	
00	0000	00000	○○○○○●○○○○○○○○○○○	00		

$$+_{\langle i,j\rangle}^{sim} (\mathcal{C}(b_{\langle j,i\rangle}^{sh}), w) = w',$$

where:

$$\begin{split} & \operatorname{bst}_{\langle i,j\rangle}^{sim}(w') = \operatorname{bst}_{\langle i,j\rangle}^{sim}(w) \ \cup \ \mathcal{C}\big(b_{\langle j,i\rangle}^{sh}\big), \\ & \operatorname{wst}(w') = \operatorname{wst}(w), \\ & \operatorname{bst}_k(w') = \operatorname{bst}_k(w) \quad (\forall k \neq \langle i,j\rangle). \end{split}$$

 $\exists \rightarrow$

Introduction	Multi-Agent Frameworks	Cantwell's Framework	Masba	Conclusion	References
00	0000	00000	○○○○○●○○○○○○○○○○○	00	
Delief Dumenting					

$$+_{\langle i,j\rangle}^{sim} (\mathcal{C}(b_{\langle j,i\rangle}^{sh}), w) = w',$$

where:

$$\begin{split} & \operatorname{bst}_{\langle i,j\rangle}^{sim}(w') = \operatorname{bst}_{\langle i,j\rangle}^{sim}(w) \ \cup \ \mathcal{C}\big(b_{\langle j,i\rangle}^{sh}\big), \\ & \operatorname{wst}(w') = \operatorname{wst}(w), \\ & \operatorname{bst}_k(w') = \operatorname{bst}_k(w) \quad (\forall k \neq \langle i,j\rangle). \end{split}$$

A simple expansion occurs as

$$\mathcal{C}\big(b^{sim}_{\langle i,j\rangle} + \mathcal{C}(b^{sh}_{\langle j,i\rangle})\big) = \Big\{+^{sim}_{\langle i,j\rangle}\big(b^{sh}_{\langle j,i\rangle},w\big) \mid w \in \mathcal{C}\big(b^{sim}_{\langle i,j\rangle}\big)\Big\}.$$

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework 00000	Masba 00000000000000000000000000000000000	Conclusion 00	References
Belief Dynamics					

Selection. In ${\rm MASBA},$ the selection function is given by:

⁴Or simply,
$$\gamma(b^{sim})(b)\subseteq b^{sh}\cup b$$

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework	Masba ○○○○○ ○ ○○○○○○○○○○○	Conclusion 00	References
Belief Dynamics					

Selection. In ${\rm M}{\rm ASBA},$ the selection function is given by:

$$\gamma_{(b^{sh}, b^{sim})}(\phi) \subseteq \phi, {}^4$$

meaning from ϕ , keep only those worlds consistent with both $b^{sh}_{\langle j,i\rangle}$ and $b^{sim}_{\langle i,j\rangle}$:

4
Or simply, $\gamma(b^{sim})(b)\subseteq b^{sh}\cup b$

Introduction 00	Multi-Agent Frameworks 0000	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion 00	References
Belief Dynamics					

Selection. In Masba , the selection function is given by:

$$\gamma_{(b^{sh}, b^{sim})}(\phi) \subseteq \phi, {}^4$$

meaning from $\phi,$ keep only those worlds consistent with both $b^{sh}_{\langle j,i\rangle}$ and $b^{sim}_{\langle i,j\rangle}$:

 $\mathsf{lf}\ \mathcal{C}\big(b^{\mathsf{sh}}_{\langle j,i\rangle}\big) \cap \mathcal{C}\big(b^{\mathsf{sim}}_{\langle i,j\rangle}\big) \cap \phi \neq \emptyset, \ \gamma_{(b^{\mathsf{sh}}, \, b^{\mathsf{sim}})}(\phi) = \mathcal{C}\big(b^{\mathsf{sh}}_{\langle j,i\rangle}\big) \cap \mathcal{C}\big(b^{\mathsf{sim}}_{\langle i,j\rangle}\big) \cap \phi.$

4
Or simply, $\gamma(b^{sim})(b)\subseteq b^{sh}\cup b$

Introduction 00	Multi-Agent Frameworks 0000	Cantwell's Framework	Masba ○○○○○○●○○○○○○○○○○	Conclusion 00	References
Belief Dynamics					

Selection. In ${\rm M}{\rm ASBA},$ the selection function is given by:

$$\gamma_{(b^{sh}, b^{sim})}(\phi) \subseteq \phi, {}^4$$

meaning from ϕ , keep only those worlds consistent with both $b^{sh}_{\langle j,i\rangle}$ and $b^{sim}_{\langle i,j\rangle}$:

$$\mathsf{lf} \ \mathcal{C}\big(b^{\mathsf{sh}}_{\langle j,i\rangle}\big) \cap \mathcal{C}\big(b^{\mathsf{sim}}_{\langle i,j\rangle}\big) \cap \phi \neq \emptyset, \ \gamma_{(b^{\mathsf{sh}}, \, b^{\mathsf{sim}})}(\phi) = \mathcal{C}\big(b^{\mathsf{sh}}_{\langle j,i\rangle}\big) \cap \mathcal{C}\big(b^{\mathsf{sim}}_{\langle i,j\rangle}\big) \cap \phi.$$

When multiple compartments take part simultaneously, we can modify this selection function accordingly.

⁴Or simply, $\gamma(b^{\textit{sim}})(b) \subseteq b^{\textit{sh}} \cup b$

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework	Masba 00000 00 00000000000000000000000000000	Conclusion 00	Reference

Belief Dynamics

Revision. The final step in *simulative belief ascription* is revision:

< ∃ >

臣

Cantwell's Framework 00000 nclusion References

Belief Dynamics

Revision. The final step in *simulative belief ascription* is revision:

$$*_{\langle i,j
angle}ig(\mathcal{C}(b_j), wig)=w',$$
 where

Ξ

21 / 37

Cantwell's Framework

 nclusion References

Belief Dynamics

Revision. The final step in *simulative belief ascription* is revision:

$$*_{\langle i,j
angle}ig(\mathcal{C}(b_j), wig) = w', ext{ where }$$

$$wst(w') = wst(w),$$

Ξ

21 / 37

Cantwell's Framework

 nclusion References

Belief Dynamics

Revision. The final step in *simulative belief ascription* is revision:

$$st_{\langle i,j
angle}ig(\mathcal{C}(b_j), \ wig)=w', \quad$$
where

$$egin{aligned} \mathsf{wst}(w') &= \mathsf{wst}(w), \ \mathsf{bst}_k(w') &= \mathsf{bst}_k(w) \quad (k
eq \langle i, j
angle), \end{aligned}$$

Ξ

21 / 37

Cantwell's Framework

 nclusion References

Belief Dynamics

Revision. The final step in *simulative belief ascription* is revision:

$$st_{\langle i,j
angle}ig(\mathcal{C}(b_j), \; wig) = w', \quad ext{where}$$

$$egin{aligned} & ext{wst}(w') = ext{wst}(w), \ & ext{bst}_k(w') = ext{bst}_k(w) \quad (k
eq \langle i, j
angle), \ & ext{bst}_{\langle i, j
angle}^{sim}(w') = egin{pmatrix} ext{bst}_{\langle i, j
angle}^{sim}(w) & ext{v} \in \mathcal{C}(b_j). \end{aligned}$$

Ξ

21 / 37

Cantwell's Framework

 Conclusion References

Belief Dynamics

Revision. The final step in *simulative belief ascription* is revision:

$$st_{\langle i,j
angle}ig(\mathcal{C}(b_j), \; wig) = w', \quad$$
where

$$egin{aligned} & ext{wst}(w') = ext{wst}(w), \ & ext{bst}_k(w') = ext{bst}_k(w) \quad (k
eq \langle i, j
angle), \ & ext{bst}_{\langle i, j
angle}^{sim}(w') = ig(ext{bst}_{\langle i, j
angle}^{sim}(w)ig) * \mathcal{C}(b_j). \end{aligned}$$

That is, $*_{\langle i,j \rangle}$ is a simulative belief revision function, adding $C(b_j)$ with a minimal revision of $bst_{\langle i,j \rangle}^{sim}(w)$:

$$\mathcal{C}(b_{\langle i,j\rangle}^{sim} * \mathcal{C}(b_j)) = \Big\{ *_{\langle i,j\rangle} \big(\mathcal{C}(b_j), w \big) \mid w \in \gamma_{(b_{\langle i,j\rangle}^{sim})} \big(\mathcal{C}(b_j) \big) \Big\}.$$

Here, the agent *j* revises the simulative belief state $b_{\langle i,j\rangle}^{sim}$ with respect to *j*'s *own* belief state b_j .

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework	Masba ००००००००●००००००००	Conclusion 00	References
Case Study					

The case presented here is called **Revisionist Reporting**, found in recent debates about *singular thoughts* [6, 2021].

Introduction 00	Multi-Agent Frameworks 0000	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion 00	References
Case Study					

The case presented here is called **Revisionist Reporting**, found in recent debates about *singular thoughts* [6, 2021].

Tennis: Ann is a six-year-old girl whom Pete, an expert in tennis pedagogy, has never met and whose existence he is unaware of. Pete believes that any six-year-old can learn tennis in ten lessons. Jane, Ann's aunt, knows Pete's views and wants to encourage Ann's father, Jim, to enrol Ann in tennis lessons. During conversation with Jim, Jane asserts:

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion 00	References
Case Study					

The case presented here is called **Revisionist Reporting**, found in recent debates about *singular thoughts* [6, 2021].

Tennis: Ann is a six-year-old girl whom Pete, an expert in tennis pedagogy, has never met and whose existence he is unaware of. Pete believes that any six-year-old can learn tennis in ten lessons. Jane, Ann's aunt, knows Pete's views and wants to encourage Ann's father, Jim, to enrol Ann in tennis lessons. During conversation with Jim, Jane asserts:

"Pete believes Ann can learn tennis in ten lessons."

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion 00	References
Case Study					

臣

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion	References
Case Study					

Pete believes that 'every 6-year-old can learn to play tennis in ten lessons'. This is a genuine belief in Pete's belief state, b_i.

Case Study	Introduction 00	Multi-Agent Frameworks 0000	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion 00	References
	Case Study					

- Pete believes that 'every 6-year-old can learn to play tennis in ten lessons'. This is a genuine belief in Pete's belief state, b_i.
- Jane knows Pete's belief and applies it to Ann, even though Pete is unaware of Ann's existence.

Introduction 00	Multi-Agent Frameworks 0000	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion	References
Case Study					

- Pete believes that 'every 6-year-old can learn to play tennis in ten lessons'. This is a genuine belief in Pete's belief state, b_i.
- Jane knows Pete's belief and applies it to Ann, even though Pete is unaware of Ann's existence.
- Jane ascribes the belief 'Ann can learn tennis in ten lessons' to Pete, when talking to Ann's father, Jim.

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework 00000	Masba 00000000000000000000000000000000000	Conclusion 00	Reference
Case Study					

Formal Representations in Masba

프 > 프

Introduction 00	Multi-Agent Frameworks 0000	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion 00	References
Case Study					

Formal Representations in Masba

- b_i Pete's genuine belief state.
- b_j Jane's genuine belief state.
- $b_{\langle i,j\rangle}^{sh}$ Pete's shared belief state to Jane.

 $b_{(i,i)}^{sim}$ Pete's simulative belief state about Ann that Jane has.

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion 00	References
Case Study					

1. Pete's Belief State (Agent *i*)

토 > 토

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework	Masba ०००००००००००००००००	Conclusion	References
Case Study					

- 1. Pete's Belief State (Agent i)
 - Pete's belief state *b_i* includes the general belief:

 $b_i \models \forall x \begin{pmatrix} x \text{ is six years old, and } x \text{ can learn how to play} \\ \text{tennis in ten lessons.} \end{pmatrix}$

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion 00	References
Case Study					

- 1. Pete's Belief State (Agent i)
 - Pete's belief state *b_i* includes the general belief:

 $b_i \models \forall x \begin{pmatrix} x \text{ is six years old, and } x \text{ can learn how to play} \\ \text{tennis in ten lessons.} \end{pmatrix}$

• (In)Formally:

 $b_i \vDash \{\phi \mid \phi \text{ is consistent with Pete's belief}\}$

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion 00	References
Case Study					

2. Jane's Belief (Agent *j*)

A E > A E >

E 990

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework	Masba ०००००००००००००००००	Conclusion 00	References
Case Study					

- **2. Jane's Belief** (Agent *j*)
 - Jane's belief state b_j includes two key pieces of information:

 $b_j \models \exists y S(y)$ (Ann exists, and Ann is six years old) $b_j \models b_i \models (\forall x \ x \ can \ learn \ to \ play \ tennis)$

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework	Masba ०००००००००००००००००	Conclusion 00	References
Case Study					

- **2. Jane's Belief** (Agent *j*)
 - Jane's belief state b_j includes two key pieces of information:

 $b_j \models \exists y S(y)$ (Ann exists, and Ann is six years old) $b_j \models b_i \models (\forall x \ x \ can \ learn \ to \ play \ tennis)$

• (In)Formally, Jane's belief state is:

 $b_j = \{\psi, \chi \mid \psi \text{ is consistent with Jane's belief, and}$ $\chi = (Ann \text{ is six years old})\}$

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion	References
Case Study					

3. Shared Belief $(b_{\langle i,j \rangle}^{sh})$

Ξ

Introduction 00	Multi-Agent Frameworks 0000	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion	References
Case Study					

- 3. Shared Belief $(b_{\langle i,j \rangle}^{sh})$
 - Jane's shared belief state about Pete captures what Jane believes Pete believes:

$$b_{\langle i,j\rangle}^{sh} \vDash \forall x \text{ (if } x \text{ is } \dots \text{)}$$

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion	References
Case Study					

- 3. Shared Belief $(b_{\langle i,j \rangle}^{sh})$
 - Jane's shared belief state about Pete captures what Jane believes Pete believes:

$$b_{\langle i,j\rangle}^{sh} \vDash \forall x \text{ (if } x \text{ is } \dots \text{)}$$

• (In)Formally:

$$b^{sh}_{\langle i,j
angle} = \{\phi \mid \phi \text{ that Pete believes } \dots \}$$

э
Introduction 00	Multi-Agent Frameworks	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion 00	References
Case Study					

4. Simulative Belief $(b_{\langle j,i\rangle}^{sim})$

▶ < ∃ >

Ξ

Introduction 00	Multi-Agent Frameworks 0000	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion	References
Case Study					

- 4. Simulative Belief $(b_{\langle j,i\rangle}^{sim})$
 - Jane hypothesizes what **Pete would believe if Pete knew** what Jane knows. For this, the simulative belief state is:

$$b_{\langle j,i\rangle}^{sim} = \{\xi \mid \xi \; (\psi \cup \chi \to \xi)\}$$

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion 00	References
Case Study					

- 4. Simulative Belief $(b_{\langle j,i\rangle}^{sim})$
 - Jane hypothesizes what **Pete would believe if Pete knew** what Jane knows. For this, the simulative belief state is:

$$b^{sim}_{\langle j,i
angle} = \{\xi \mid \xi \; (\psi \cup \chi
ightarrow \xi)\}$$

• This would be something like:

$$b^{sim}_{\langle j,i \rangle} \vDash$$
 (If Pete knew Ann is six years old, . . .)

Introduction 00	Multi-Agent Frameworks 0000	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion 00	References
Case Study					

5. Masba Dynamics in Action

▶ < ∃ >

< 口 > < 同

E

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework	Masba ○○○○○○○○○○○○○○○○○○	Conclusion 00	Reference
C C I					

- 5. Masba Dynamics in Action
 - 1 Common Learning:
 - Numerous things that they have commonly learned, using *common learning dynamics*:

$$w \xrightarrow{\oplus_N(\cdot)} w'$$

Introduction 00	Multi-Agent Frameworks 0000	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion	Referen
Case Study					

5. Masba Dynamics in Action

- 1 Common Learning:
 - Numerous things that they have commonly learned, using *common learning dynamics*:

$$w \xrightarrow{\oplus_N(\cdot)} w'$$

- 2 Simulative State Update:
 - After $\oplus_N(\cdot)$, Jane updates $b_{(i,i)}^{sim}$.

Introduction	Multi-Agent Frameworks	Cantwell's Framework	Masi
00	0000	00000	000

Conclusion References

Case Study

- 5. Masba Dynamics in Action
 - 1 Common Learning:
 - Numerous things that they have commonly learned, using *common learning dynamics*:

$$w \xrightarrow{\oplus_N(\cdot)} w'$$

- 2 Simulative State Update:
 - After $\oplus_N(\cdot)$, Jane updates $b_{\langle j,i \rangle}^{sim}$.
- 3 Shared State Update:
 - Pete tells Ann about his belief, prompting Jane to construct a shared belief about Pete:

$$b^{sh}_{\langle i,j\rangle}\vDash\phi$$

Introduction 00	Multi-Agent Frameworks	Cantwell's Framework	Masba 000000000000000000000000	Conclusion	References
Case Study					

5. Masba Dynamics in Action (Continued)

프 > 프

Introduction 00	Multi-Agent Frameworks 0000	Cantwell's Framework	Masba 00000000000000000000000000000000000	Conclusion 00	References
Case Study					

5. Masba Dynamics in Action (Continued)

- 4 Simulative State Update:
 - Jane updates her simulative state about Pete by first including the **shared state**:

$$b^{sim}_{\langle j,i
angle} \leftarrow b^{sh}_{\langle i,j
angle}$$

• Followed by the revision step:

$$b^{sim}_{\langle j,i
angle} \leftarrow b^{sh}_{\langle i,j
angle} * \mathcal{C}(b_j)$$

• This ensures Jane's simulative states of Pete are consistent with her own belief state.

Introd	uction

/lulti-Agent Frameworks

Cantwell's Framework 00000 Masba 000000000000000000000000 Conclusion

References

Case Study

6. Observations in Tennis

Ξ 9 Q (°

31 / 37

< □ > < □ > < □ > < □ > < □ >

Multi-Agent Frameworks

Cantwell's Framework

Masba 00000000000000000000000 onclusion R o

References

Case Study

- 6. Observations in Tennis
 - Common Learning Dynamics: Jane, Jim, Pete (and probably Ann) share common knowledge:

$$w \xrightarrow{\oplus_N(\cdot)} w', \quad N = \{i, j, k, \dots, n\}$$

Э

31 / 37

イロト イヨト イヨト

Multi-Agent Frameworks

Cantwell's Framework

Masba 00000000000000000000000 Conclusion Re

References

31 / 37

Case Study

- 6. Observations in Tennis
 - Common Learning Dynamics: Jane, Jim, Pete (and probably Ann) share common knowledge:

$$w \xrightarrow{\oplus_N(\cdot)} w', \quad N = \{i, j, k, \dots, n\}$$

• Simulative Reasoning: Jane infers, *If Pete were aware of* Ann, he would believe that she can learn tennis in ten lessons."

Multi-Agent Frameworks

Cantwell's Framework

Masba 0000000000000000000000 Conclusion Ret

References

31 / 37

Case Study

- 6. Observations in Tennis
 - Common Learning Dynamics: Jane, Jim, Pete (and probably Ann) share common knowledge:

$$w \xrightarrow{\oplus_N(\cdot)} w', \quad N = \{i, j, k, \dots, n\}$$

- Simulative Reasoning: Jane infers, *If Pete were aware of* Ann, he would believe that she can learn tennis in ten lessons."
- This reasoning is represented in $b_{\langle i,j\rangle}^{sim}$, not in b_i .

Multi-Agent Frameworks

Cantwell's Framework

Masba 0000000000000000000000 Conclusion References

Case Study

- 6. Observations in Tennis
 - Common Learning Dynamics: Jane, Jim, Pete (and probably Ann) share common knowledge:

$$w \xrightarrow{\oplus_N(\cdot)} w', \quad N = \{i, j, k, \dots, n\}$$

- Simulative Reasoning: Jane infers, *If Pete were aware of* Ann, he would believe that she can learn tennis in ten lessons."
- This reasoning is represented in $b_{(i,i)}^{sim}$, not in b_i .
- Integrity of Each Belief Compartment: The world is represented as a tuple:

$$w = \langle u, b_n, b^{sh}, b^{sim} \rangle$$

Multi-Agent Frameworks

Cantwell's Framework

Masba 0000000000000000000000 Conclusion Ref

References

31 / 37

Case Study

- 6. Observations in Tennis
 - Common Learning Dynamics: Jane, Jim, Pete (and probably Ann) share common knowledge:

$$w \xrightarrow{\oplus_N(\cdot)} w', \quad N = \{i, j, k, \dots, n\}$$

- Simulative Reasoning: Jane infers, *If Pete were aware of* Ann, he would believe that she can learn tennis in ten lessons."
- This reasoning is represented in $b_{(i,i)}^{sim}$, not in b_i .
- Integrity of Each Belief Compartment: The world is represented as a tuple:

$$w = \langle u, b_n, b^{sh}, b^{sim} \rangle$$

Pete's belief is in b_i, and the simulative state is in a separate compartment, b^{sim}_(j,i).

Cantwell's Framework

Conclusion ●○

References

 $\rm MASBA,$ an extension of ${\cal F}$ incorporating *simulative* and *shared* belief states, provides a modular internal-worlds semantics for simulative belief ascriptions between agents. By treating a world as

$$w = \langle u, b_1, \ldots, b_n, b_{\langle i,j \rangle (1 \le i,j \le n \mid i \ne j)}^{sh}, b_{\langle i,j \rangle (i \le i,j \le n \mid i \ne j)}^{sim} \rangle,$$

 $M \ensuremath{\mathrm{ASBA}}$ supports:

ヨト イヨト

References

 $\rm MASBA,$ an extension of ${\cal F}$ incorporating *simulative* and *shared* belief states, provides a modular internal-worlds semantics for simulative belief ascriptions between agents. By treating a world as

$$w = \langle u, b_1, \ldots, b_n, b_{\langle i,j \rangle (1 \le i,j \le n \mid i \ne j)}^{sh}, b_{\langle i,j \rangle (i \le i,j \le n \mid i \ne j)}^{sim} \rangle,$$

 MASBA supports:

• Multiple doxastic compartments: b, b^{sh}, b^{sim} ,

Cantwell's Framework

Conclusion ●○

References

 $\rm MASBA,$ an extension of ${\cal F}$ incorporating *simulative* and *shared* belief states, provides a modular internal-worlds semantics for simulative belief ascriptions between agents. By treating a world as

$$w = \langle u, b_1, \ldots, b_n, b_{\langle i,j \rangle (1 \le i,j \le n \mid i \ne j)}^{sh}, b_{\langle i,j \rangle (i \le i,j \le n \mid i \ne j)}^{sim} \rangle,$$

 MASBA supports:

- Multiple doxastic compartments: b, b^{sh}, b^{sim} ,
- Local, modular updates rather than global ones,

References

 $\rm MASBA,$ an extension of ${\cal F}$ incorporating *simulative* and *shared* belief states, provides a modular internal-worlds semantics for simulative belief ascriptions between agents. By treating a world as

$$w = \langle u, b_1, \ldots, b_n, b_{\langle i,j \rangle (1 \le i,j \le n \mid i \ne j)}^{sh}, b_{\langle i,j \rangle (i \le i,j \le n \mid i \ne j)}^{sim} \rangle,$$

 $M \ensuremath{\mathsf{ASBA}}$ supports:

- Multiple doxastic compartments: b, b^{sh}, b^{sim} ,
- Local, modular updates rather than global ones,
- Distinguishing between common learning and simulative learning,

References

 $\rm MASBA,$ an extension of ${\cal F}$ incorporating simulative and shared belief states, provides a modular internal-worlds semantics for simulative belief ascriptions between agents. By treating a world as

$$w = \langle u, b_1, \ldots, b_n, b_{\langle i,j \rangle (1 \le i,j \le n \mid i \ne j)}^{sh}, b_{\langle i,j \rangle (i \le i,j \le n \mid i \ne j)}^{sim} \rangle,$$

 ${\rm MASBA}$ supports:

- Multiple doxastic compartments: b, b^{sh}, b^{sim} ,
- Local, modular updates rather than global ones,
- Distinguishing between common learning and simulative learning,
- Incorporating AGM-style revision for simulative belief ascriptions as well.

4 ∃ ≥ < 3 ≥ </p>

lulti-Agent Frameworks 000 Cantwell's Framework

Conclusion ○● References

Thank you!

2025 Korea Logic Day

臣

Multi-Agent Frameworks

Cantwell's Framework

Conclusion References

- Peter Aczel. Non-Well-Founded Sets. Number no. 14 in CSLI Lecture Notes. Center for the Study of Language and Information, 1988. ISBN 978-0-937073-21-6 978-0-937073-22-3.
- [2] Carlos E. Alchourrón, Peter Gärdenfors, and David Makinson. On the Logic of Theory Change: Partial Meet Contraction and Revision Functions. In Horacio Arló-Costa, Vincent F. Hendricks, and Johan Van Benthem, editors, *Readings in Formal Epistemology*, pages 195–217. Springer International Publishing, 2016. ISBN 978-3-319-20450-5 978-3-319-20451-2. doi: 10.1007/978-3-319-20451-2_13.
- [3] G. Aucher. Generalizing AGM to a multi-agent setting. Logic Journal of IGPL, 18(4):530–558, 2010-08-01. ISSN 1367-0751, 1368-9894. doi: 10.1093/jigpal/jzp037.

Multi-Agent Frameworks

Cantwell's Framework

Conclusion References

- [4] Robert J. Aumann. Agreeing to disagree. *The Annals of Statistics*, 4(6), 1976. doi: 10.1214/aos/1176343654.
- [5] Alexandru Baltag, Lawrence S. Moss, and Sł awomir Solecki. The Logic of Public Announcements, Common Knowledge, and Private Suspicions. In Horacio Arló-Costa, Vincent F. Hendricks, and Johan Van Benthem, editors, *Readings in Formal Epistemology*, pages 773–812. Springer International Publishing, 2016. ISBN 978-3-319-20450-5 978-3-319-20451-2. doi: 10.1007/978-3-319-20451-2_38.
- [6] Kyle Blumberg and Harvey Lederman. Revisionist Reporting. *Philosophical Studies*, 178(3):755–783, 2021-03. ISSN 0031-8116, 1573-0883. doi: 10.1007/s11098-020-01457-4.
- John Cantwell. A Formal Model of Multi-Agent Belief-Interaction. Journal of Logic, Language and Information, 14:397–422, 2005. doi: 10.1007/s10849-005-4019-8.

Introduction Multi-00 0000

Multi-Agent Frameworks

Cantwell's Framework

Conclusion References

- [8] John Cantwell. A Model for Updates in a Multi-Agent Setting. *Journal of Applied Non-Classical Logics*, 17(2): 183–196, 2007-01. ISSN 1166-3081, 1958-5780. doi: 10.3166/jancl.17.183-196.
- Kanianthra Mani Chandy, K. Mani Chandy, and Jayadev Misra. *Parallel Program Design: A Foundation*. Addison-Wesley, repr. with corrections edition, 1989. ISBN 978-0-201-05866-6.
- [10] Ronald Fagin, Joseh Y. Halpern, Yoram Moses, and Moshe Y. Vardi. *Reasoning about Knowledge*. MIT Press, 1995. ISBN 978-0-262-06162-9.
- [11] Jelle Gerbrandy. Bisimulations on Planet Kripke. Institute for Logic, Language and Computation, Universiteit van Amsterdam, 1999. ISBN 978-90-5776-019-8.

ntroduction	Multi-Agent
0	0000 -

-Agent Frameworks

Cantwell's Framework

- [12] Jelle Gerbrandy and Willem Groeneveld. Reasoning about Information Change. *Journal of Logic, Language and Information*, 6:147–169, 1997.
- [13] Robert M. Gordon. Folk Psychology as Simulation. *Mind & Language*, 1(2):158–171, 1986-06. ISSN 0268-1064, 1468-0017. doi: 10.1111/j.1468-0017.1986.tb00324.x.
- [14] Robert M. Gordon. Simulation Without Introspection or Inference From Me to You. In Martin Davies and Tony Stone, editors, *Mental Simulation: Evaluations and Applications -Reading in Mind and Language*, Readings in Mind and Language, pages 53–67. Wiley-Blackwell, 1995-10. ISBN 978-0-631-19873-4.