
A New Coq Formalisation of Classical First-Order Logic
with Proofs of the Soundness and Completeness Theorems

Kijeong Lim

Chonnam National University

Korea Logic Day
January 14, 2025

K. Lim (Chonnam National University) January 14, 2025 1 / 38

Table of Contents

1. Introduction
Motivation
Advantages of Embedding First-Order Logic into “Coq”
Formalisation Overview

2. Formalisation
Syntax
Semantics
Deduction System
Meta-theory

3. Comparisons
4. Conclusion

Main Result
Contributions
Future Work

K. Lim (Chonnam National University) January 14, 2025 2 / 38

Introduction

The Motivation.
It has been a common practice in software verification to rely on proof
assistants, such as Coq and Isabelle, to obtain formal proofs of program
correctness. In these systems, programs are abstracted as mathematical
entities, and their behaviour is denoted by certain mathematical
properties.
To reason about the behaviour of a program effectively using a proof
assistant, there must be a well-developed theory about the mathematical
properties being verified. For example, Software Foundations Lab
formalised a theory of ordinal numbers, which is a purely mathematical
concept, to state and/or prove the termination of a given program.
However, most proof assistants do not adopt the usual first-order
language used by working mathematicians. Instead, they take dependent
type theories as their foundation. Therefore, to facilitate the translation
of mathematical theories into a proof assistant, an intermediate language
is deemed necessary.

K. Lim (Chonnam National University) January 14, 2025 3 / 38

Introduction

The Advantages of Embedding First-Order Logic into “Coq”.
CIC serves as a very rich metalanguage. In contrast, the Fitch system has poor
expressiveness, which limits its ability to state and/or prove meta-theorems.
For example, it cannot directly state whether an object theory T of arithmetic
admits the ω-rule, whereas Coq can.

(∀n ∈ N)(T ⊢ P (n̄))
T ⊢ ∀̇xP (x)

ω-rule

One can leverage various libraries of the Coq community when formalising an
embedded first-order theory. For instance, if a first-order theory T is
complete—that is, T proves either an arbitrary proposition or its negation—the
non-existence of a model for the negation of a proposition φ implies that φ is a
theorem of T , where the non-existence may be shown with the libraries in Coq.
Furthermore, any sentence φ proved in an embedded first-order theory T can be
lifted to its corresponding theorem, which can be directly used in Coq. If M is a
model of T , then it immediately becomes a theorem in Coq that φ holds for M.

K. Lim (Chonnam National University) January 14, 2025 4 / 38

Introduction

Formalisation Overview.
1. Syntax. How to use symbols to define logical expressions.
2. Semantics. What is the meaning of a logical expression.
3. Deduction System. What formulae are provable.
4. Meta-theory. The theory on first-order logic.

K. Lim (Chonnam National University) January 14, 2025 5 / 38

Formalisation (Syntax)

A first-order language L is represented as a record with the following fields:

a Set F of function symbols;
a Set C of constant symbols;
a Set R of relation symbols;
a table mapping each f ∈ F to its arity nf ∈ N; and
a table mapping each R ∈ R to its arity nR ∈ N.

K. Lim (Chonnam National University) January 14, 2025 6 / 38

Formalisation (Syntax)

An individual variable x is of the form vi for a natural number i—i.e.,

x ::= vi for i ∈ N.

An L-term t is defined inductively by

t ::= x
∣∣ f t⃗

∣∣ c

where f ∈ F , c ∈ C, and t⃗ is a vector of L-terms.
An L-formula φ is defined inductively by

φ ::= R t⃗
∣∣ t1 =̇ t2

∣∣ ¬̇φ1
∣∣ φ1 →̇ φ2

∣∣ ∀̇xφ1

where R ∈ R.
Notation. For a first-order language L,

the type of L-terms is denoted by trmL; and
the type of L-formulae is denoted by frmL.

K. Lim (Chonnam National University) January 14, 2025 7 / 38

Formalisation (Syntax)

A simultaneous substitution σ is defined as a map N → trmL.
ι := i 7→ vi. t/x;σ := i 7→ if x = vi then t else σ(i). t/x := t/x; ι.

The result of applying σ to a syntactic object X is denoted by [σ]X.
[σ](vi) := σ(i). [σ](∀̇xφ1) := let y := χ(σ, ∀̇xφ1) in ∀̇y ([y/x;σ]φ1).
χ(σ, φ) := max {max(FV(σ(i))) | vi ∈ FV(φ)} + 1.
α-equivalence is defined inductively. The constructor for ∀̇ is

[y/x1]φ1 ≡α [y/x2]φ2

∀̇x1 φ1 ≡α ∀̇x2 φ2

provided by y /∈ FV(∀̇x1 φ1) ∧ y /∈ FV(∀̇x2 φ2).
A singleton substitution φ[x := t] is also defined: φ[x := t] ≡α [t/x]φ;

whenever y ̸= x ∧ y ∈ FV(t), (∀̇y φ)[x := t] = ∀̇y′ (φ[y := y′][x := t])

for some y′ /∈ {x} ∪ FV(t) ∪ FV(φ); and (∀̇xφ)[x := t] = (∀̇xφ).

K. Lim (Chonnam National University) January 14, 2025 8 / 38

Formalisation (Syntax)

A simultaneous substitution σ is defined as a map N → trmL.
ι := i 7→ vi. t/x;σ := i 7→ if x = vi then t else σ(i). t/x := t/x; ι.
The result of applying σ to a syntactic object X is denoted by [σ]X.
[σ](vi) := σ(i). [σ](∀̇xφ1) := let y := χ(σ, ∀̇xφ1) in ∀̇y ([y/x;σ]φ1).
χ(σ, φ) := max {max(FV(σ(i))) | vi ∈ FV(φ)} + 1.

α-equivalence is defined inductively. The constructor for ∀̇ is

[y/x1]φ1 ≡α [y/x2]φ2

∀̇x1 φ1 ≡α ∀̇x2 φ2

provided by y /∈ FV(∀̇x1 φ1) ∧ y /∈ FV(∀̇x2 φ2).
A singleton substitution φ[x := t] is also defined: φ[x := t] ≡α [t/x]φ;

whenever y ̸= x ∧ y ∈ FV(t), (∀̇y φ)[x := t] = ∀̇y′ (φ[y := y′][x := t])

for some y′ /∈ {x} ∪ FV(t) ∪ FV(φ); and (∀̇xφ)[x := t] = (∀̇xφ).

K. Lim (Chonnam National University) January 14, 2025 8 / 38

Formalisation (Syntax)

A simultaneous substitution σ is defined as a map N → trmL.
ι := i 7→ vi. t/x;σ := i 7→ if x = vi then t else σ(i). t/x := t/x; ι.
The result of applying σ to a syntactic object X is denoted by [σ]X.
[σ](vi) := σ(i). [σ](∀̇xφ1) := let y := χ(σ, ∀̇xφ1) in ∀̇y ([y/x;σ]φ1).
χ(σ, φ) := max {max(FV(σ(i))) | vi ∈ FV(φ)} + 1.
α-equivalence is defined inductively. The constructor for ∀̇ is

[y/x1]φ1 ≡α [y/x2]φ2

∀̇x1 φ1 ≡α ∀̇x2 φ2

provided by y /∈ FV(∀̇x1 φ1) ∧ y /∈ FV(∀̇x2 φ2).

A singleton substitution φ[x := t] is also defined: φ[x := t] ≡α [t/x]φ;

whenever y ̸= x ∧ y ∈ FV(t), (∀̇y φ)[x := t] = ∀̇y′ (φ[y := y′][x := t])

for some y′ /∈ {x} ∪ FV(t) ∪ FV(φ); and (∀̇xφ)[x := t] = (∀̇xφ).

K. Lim (Chonnam National University) January 14, 2025 8 / 38

Formalisation (Syntax)

A simultaneous substitution σ is defined as a map N → trmL.
ι := i 7→ vi. t/x;σ := i 7→ if x = vi then t else σ(i). t/x := t/x; ι.
The result of applying σ to a syntactic object X is denoted by [σ]X.
[σ](vi) := σ(i). [σ](∀̇xφ1) := let y := χ(σ, ∀̇xφ1) in ∀̇y ([y/x;σ]φ1).
χ(σ, φ) := max {max(FV(σ(i))) | vi ∈ FV(φ)} + 1.
α-equivalence is defined inductively. The constructor for ∀̇ is

[y/x1]φ1 ≡α [y/x2]φ2

∀̇x1 φ1 ≡α ∀̇x2 φ2

provided by y /∈ FV(∀̇x1 φ1) ∧ y /∈ FV(∀̇x2 φ2).
A singleton substitution φ[x := t] is also defined: φ[x := t] ≡α [t/x]φ;

whenever y ̸= x ∧ y ∈ FV(t), (∀̇y φ)[x := t] = ∀̇y′ (φ[y := y′][x := t])

for some y′ /∈ {x} ∪ FV(t) ∪ FV(φ); and (∀̇xφ)[x := t] = (∀̇xφ).

K. Lim (Chonnam National University) January 14, 2025 8 / 38

Formalisation (Semantics)

Definition. A structure A of L is a record consisting of the following fields:
a setoid (A,∼A),
interpretations fA : Anf → A for each f ∈ F ,
interpretations cA : A for each c ∈ C, and
interpretations RA : AnR → Prop for each R ∈ R,

such that ∼A is compatible with all fA and RA—i.e.,
a1 ∼A a2 · · · a2nf −1 ∼A a2nf

fA(a1, · · · , a2nf −1) ∼A fA(a2, · · · , a2nf)
a1 ∼A a2 · · · a2nR−1 ∼A a2nR

RA(a1, · · · , a2nR−1) ↔ RA(a2, · · · , a2nR)

—and A is nonempty.
Denote the type A by |A|, which is called the domain of discourse of A.

K. Lim (Chonnam National University) January 14, 2025 9 / 38

Formalisation (Semantics)

Tarski’s definition of truth. Let ρ : N → |A|.
JviK

A
ρ := ρ(i),

q
f t⃗

yA

ρ
:= fA

q
t⃗
yA

ρ
,

JcKAρ := cA,
q
R t⃗

yA

ρ
:= RA

q
t⃗
yA

ρ
,

Jt1 =̇ t2K
A
ρ := Jt1K

A
ρ ∼|A| Jt2K

A
ρ ,

J¬̇φ1K
A
ρ := ¬ Jφ1K

A
ρ ,

Jφ1 →̇ φ2K
A
ρ := Jφ1K

A
ρ → Jφ2K

A
ρ ,

q
∀̇xφ1

yA

ρ
:= (∀a ∈ |A|) Jφ1K

A
[a/x]ρ where [a/x]ρ := i 7→

{
a, if x = vi;
ρ(i), otherwise.

K. Lim (Chonnam National University) January 14, 2025 10 / 38

Formalisation (Semantics)

Notation.
We say (A, ρ) satisfies φ if JφKAρ holds. Then write (A, ρ) |= φ.
For Γ : frmL → Prop, write (A, ρ) |= Γ if (∀φ ∈ Γ)((A, ρ) |= φ).
We write Γ ⊨ C when, for any structure A of L and any ρ : N → |A|,

if (A, ρ) |= Γ then (A, ρ) |= C.

Details. For a type A, the type of subsets of A is defined as A → Prop—i.e.,

#[universes(polymorphic=yes)]
Definition ensemble@{u} (A : Type@{u}) : Type@{u} := A → Prop.

Thus, Γ : frmL → Prop indicates that Γ is a set of L-formulae.

K. Lim (Chonnam National University) January 14, 2025 11 / 38

Formalisation (Deduction System)
Definition. For Γ : frmL → Prop and C : frmL, let the proposition

Γ ⊢ C

mean that there exists φ⃗ : list (frmL) such that φ⃗ ⊆ Γ and proof φ⃗ C is
inhabited, where list (frmL) is the type of finite sequences of L-formulae.

Inductive proof : list (frmL) → frmL → Set := · · · .

Axm
proof [p] p

Mp
proof φ⃗1 (p →̇ q) proof φ⃗2 p

proof (φ⃗1 ++ φ⃗2) q
Gen

proof φ⃗ q

proof φ⃗ (∀̇x q)
provided by x /∈ FV(φ⃗).

K. Lim (Chonnam National University) January 14, 2025 12 / 38

Formalisation (Deduction System)

The axiom schema for propositional logic.
proof [] (p →̇ (q →̇ p))
proof [] ((p →̇ (q →̇ r)) →̇ ((p →̇ q) →̇ (p →̇ r)))
proof [] (((¬̇ q) →̇ (¬̇ p)) →̇ (p →̇ q))

K. Lim (Chonnam National University) January 14, 2025 13 / 38

Formalisation (Deduction System)

The axiom schema for universal quantifier.
proof [] ((∀̇x p) →̇ [t/x]p)
proof [] (p →̇ (∀̇x p)) provided by x /∈ FV(p)
proof [] ((∀̇x (p →̇ q)) →̇ ((∀̇x p) →̇ (∀̇x q)))

K. Lim (Chonnam National University) January 14, 2025 14 / 38

Formalisation (Deduction System)

The axioms for Leibniz equality.
proof [] (v0 =̇ v0)
proof [] ((v0 =̇ v1) →̇ (v1 =̇ v0))
proof [] ((v0 =̇ v1) →̇ ((v1 =̇ v2) →̇ (v0 =̇ v2)))
proof [] (Fun eqAxm f) for each F ∈ F
proof [] (Rel eqAxmR) for each R ∈ R

where

Fun eqAxm f := ((v2nf −2 =̇ v2nf −1) →̇ (· · · →̇ ((v0 =̇ v1) →̇
(f(v2nf −2, · · · , v0) =̇ f(v2nf −1, · · · , v1))))),

Rel eqAxmR := ((v2nR−2 =̇ v2nR−1) →̇ (· · · →̇ ((v0 =̇ v1) →̇
(R(v2nR−2, · · · , v0) →̇ R(v2nR−1, · · · , v1))))).

K. Lim (Chonnam National University) January 14, 2025 15 / 38

Formalisation (Meta-theory)

Theorem. The Deduction Theorem.
For any set Γ of L-formulae and any L-formulae A, B,

Γ ⊢ A →̇ B ↔ {A} ∪ Γ ⊢ B.

Proof.
(⇒) Apply Mp and Axm.
(⇐) There is a finite list φ⃗ of L-formulae with PF : proof φ⃗ B such that

φ⃗ ⊆ {A} ∪ Γ. It is sufficient to show φ⃗ ∩ Γ ⊢ A →̇ B. It can be proved by
induction on PF. The most difficult case is Gen, but observing that

A ∈ φ⃗ ∨ φ⃗ ⊆ Γ,

we can close the case.

K. Lim (Chonnam National University) January 14, 2025 16 / 38

Formalisation (Meta-theory)

Theorem. The Deduction Theorem.
For any set Γ of L-formulae and any L-formulae A, B,

Γ ⊢ A →̇ B ↔ {A} ∪ Γ ⊢ B.

Proof.
(⇒) Apply Mp and Axm.
(⇐) There is a finite list φ⃗ of L-formulae with PF : proof φ⃗ B such that

φ⃗ ⊆ {A} ∪ Γ. It is sufficient to show φ⃗ ∩ Γ ⊢ A →̇ B. It can be proved by
induction on PF. The most difficult case is Gen, but observing that

A ∈ φ⃗ ∨ φ⃗ ⊆ Γ,

we can close the case.

K. Lim (Chonnam National University) January 14, 2025 16 / 38

Formalisation (Meta-theory)

Theorem. The Soundness Theorem.
For any set Γ of L-formulae and any L-formula C,

Γ ⊢ C → Γ ⊨ C.

Proof.
proof φ⃗ C is inhabited for some φ⃗ ⊆ Γ. Now, by induction on proof φ⃗ C.
The law of excluded middle is assumed to show the theorem, because of the
following axiom scheme

proof [] (((¬̇ q) →̇ (¬̇ p)) →̇ (p →̇ q)).

K. Lim (Chonnam National University) January 14, 2025 17 / 38

Formalisation (Meta-theory)

Theorem. The Soundness Theorem.
For any set Γ of L-formulae and any L-formula C,

Γ ⊢ C → Γ ⊨ C.

Proof.
proof φ⃗ C is inhabited for some φ⃗ ⊆ Γ. Now, by induction on proof φ⃗ C.
The law of excluded middle is assumed to show the theorem, because of the
following axiom scheme

proof [] (((¬̇ q) →̇ (¬̇ p)) →̇ (p →̇ q)).

K. Lim (Chonnam National University) January 14, 2025 17 / 38

Formalisation (Meta-theory)

Lemma. For any set Γ of L-formulae and any L-formulae φ1, φ2,

Γ ⊢ φ1 φ1 ≡α φ2
Γ ⊢ φ2

Proof.
It is enough to show

φ1 ≡α φ2 → ({φ1} ⊢ φ2 ∧ {φ2} ⊢ φ1).

Now, by strong induction on the height of φ1 and destructing φ1 ≡α φ2.

K. Lim (Chonnam National University) January 14, 2025 18 / 38

Formalisation (Meta-theory)

Lemma. For any set Γ of L-formulae and any L-formulae φ1, φ2,

Γ ⊢ φ1 φ1 ≡α φ2
Γ ⊢ φ2

Proof.
It is enough to show

φ1 ≡α φ2 → ({φ1} ⊢ φ2 ∧ {φ2} ⊢ φ1).

Now, by strong induction on the height of φ1 and destructing φ1 ≡α φ2.

K. Lim (Chonnam National University) January 14, 2025 18 / 38

Formalisation (Meta-theory)
Fact. All of the following rules are admissible:

Γ ⊢ t1 =̇ t1

Γ ⊢ t1 =̇ t2
Γ ⊢ t2 =̇ t1

Γ ⊢ t1 =̇ t2 Γ ⊢ t2 =̇ t3
Γ ⊢ t1 =̇ t3

Γ ⊢ t1 =̇ t2 · · · Γ ⊢ t2nf −1 =̇ t2nf

Γ ⊢ f(t1, · · · , t2nf −1) =̇ f(t2, · · · , t2nf)
Γ ⊢ t1 =̇ t2 · · · Γ ⊢ t2nR−1 =̇ t2nR

Γ ⊢ R(t1, · · · , t2nR−1) →̇ R(t2, · · · , t2nR)

Γ ⊢ t1 =̇ t2 Γ ⊢ [t1/x]φ
Γ ⊢ [t2/x]φ

Proof.
Note that ∅ ⊢ (∀̇vn−1 (∀̇vn−2 · · · (∀̇v0 ψ))) →̇ [i 7→ if i < n then σ(i) else vi]ψ holds
for any n ∈ N, any σ : N → trmL, and any L-formula ψ. The last rule follows from

Γ ⊢ t1 =̇ t2
(Γ ⊢ (φ[x := t1]) →̇ (φ[x := t2])) ∧ (Γ ⊢ (φ[x := t2]) →̇ (φ[x := t1]))

which can be shown by strong induction on the height of φ.

K. Lim (Chonnam National University) January 14, 2025 19 / 38

Formalisation (Meta-theory)
Fact. All of the following rules are admissible:

Γ ⊢ t1 =̇ t1

Γ ⊢ t1 =̇ t2
Γ ⊢ t2 =̇ t1

Γ ⊢ t1 =̇ t2 Γ ⊢ t2 =̇ t3
Γ ⊢ t1 =̇ t3

Γ ⊢ t1 =̇ t2 · · · Γ ⊢ t2nf −1 =̇ t2nf

Γ ⊢ f(t1, · · · , t2nf −1) =̇ f(t2, · · · , t2nf)
Γ ⊢ t1 =̇ t2 · · · Γ ⊢ t2nR−1 =̇ t2nR

Γ ⊢ R(t1, · · · , t2nR−1) →̇ R(t2, · · · , t2nR)

Γ ⊢ t1 =̇ t2 Γ ⊢ [t1/x]φ
Γ ⊢ [t2/x]φ

Proof.
Note that ∅ ⊢ (∀̇vn−1 (∀̇vn−2 · · · (∀̇v0 ψ))) →̇ [i 7→ if i < n then σ(i) else vi]ψ holds
for any n ∈ N, any σ : N → trmL, and any L-formula ψ. The last rule follows from

Γ ⊢ t1 =̇ t2
(Γ ⊢ (φ[x := t1]) →̇ (φ[x := t2])) ∧ (Γ ⊢ (φ[x := t2]) →̇ (φ[x := t1]))

which can be shown by strong induction on the height of φ.

K. Lim (Chonnam National University) January 14, 2025 19 / 38

Formalisation (Meta-theory)

Lemma. The Substitution Lemma.
For any set Γ of L-formulae, any L-formula φ, and any σ : N → trmL,

Γ ⊢ φ → [σ]Γ ⊢ [σ]φ.

Proof.

There is a list ψ⃗ such that proof ψ⃗ φ is inhabited and ψ⃗ ⊆ Γ. Now, induction
on ψ⃗. One can prove ∅ ⊢ φ → ∅ ⊢ [σ]φ by induction on proof [] φ.

K. Lim (Chonnam National University) January 14, 2025 20 / 38

Formalisation (Meta-theory)

Lemma. The Substitution Lemma.
For any set Γ of L-formulae, any L-formula φ, and any σ : N → trmL,

Γ ⊢ φ → [σ]Γ ⊢ [σ]φ.

Proof.

There is a list ψ⃗ such that proof ψ⃗ φ is inhabited and ψ⃗ ⊆ Γ. Now, induction
on ψ⃗. One can prove ∅ ⊢ φ → ∅ ⊢ [σ]φ by induction on proof [] φ.

K. Lim (Chonnam National University) January 14, 2025 20 / 38

Formalisation (Meta-theory)

Lemma. The Enumeration Lemma.

If F , C, and R are countable, then trmL and frmL are enumerable.

Proof.
Using the Cantor pairing function cp : N → N × N, one can construct
functions that return abstract syntax trees of trmL and frmL, respectively,
with heights that are less than or equal to the second parameter, using the
first parameter as the seed for AST generation. Now, using cp again, it is
possible to enumerate trmL and frmL.

To prove the Countable Completeness Theorem, we now assume that L is an
arbitrary first-order language whose sets of function, constant, and relation
symbols are countable.
Details. Let A : Type. A is said to be countable when there is an injection
A → N. A is said to be enumerable when there is a surjection enum : N → A.
Note that A is countable if and only if it is enumerable or empty.

K. Lim (Chonnam National University) January 14, 2025 21 / 38

Formalisation (Meta-theory)

Lemma. The Enumeration Lemma.

If F , C, and R are countable, then trmL and frmL are enumerable.

Proof.
Using the Cantor pairing function cp : N → N × N, one can construct
functions that return abstract syntax trees of trmL and frmL, respectively,
with heights that are less than or equal to the second parameter, using the
first parameter as the seed for AST generation. Now, using cp again, it is
possible to enumerate trmL and frmL.

To prove the Countable Completeness Theorem, we now assume that L is an
arbitrary first-order language whose sets of function, constant, and relation
symbols are countable.
Details. Let A : Type. A is said to be countable when there is an injection
A → N. A is said to be enumerable when there is a surjection enum : N → A.
Note that A is countable if and only if it is enumerable or empty.

K. Lim (Chonnam National University) January 14, 2025 21 / 38

Formalisation (Meta-theory)
Definition. Each Henkin constant symbol c̄ is defined to be a natural
number. Furthermore, L′ is defined to be the augmented language obtained by
adding Henkin constant symbols to L.
Fact. frmL′ is also enumerable.

Proof.
C ⊎ N is countable. Now, apply the Enumeration Lemma.

Notation. For an L-formula φ, the embedding φ into L′ is denoted by ↿φ.
Fact. For any L-formulae φ and ψ,

φ ≡α ψ ↔ ↿φ ≡α ↿ψ.

Proof.
Both sides can be proved by induction.

Details. The set of constant symbols of L′ can be thought of as C ⊎ N, while
the other sets of symbols are the same as those of L.

K. Lim (Chonnam National University) January 14, 2025 22 / 38

Formalisation (Meta-theory)
Definition. Each Henkin constant symbol c̄ is defined to be a natural
number. Furthermore, L′ is defined to be the augmented language obtained by
adding Henkin constant symbols to L.
Fact. frmL′ is also enumerable.

Proof.
C ⊎ N is countable. Now, apply the Enumeration Lemma.

Notation. For an L-formula φ, the embedding φ into L′ is denoted by ↿φ.
Fact. For any L-formulae φ and ψ,

φ ≡α ψ ↔ ↿φ ≡α ↿ψ.

Proof.
Both sides can be proved by induction.

Details. The set of constant symbols of L′ can be thought of as C ⊎ N, while
the other sets of symbols are the same as those of L.

K. Lim (Chonnam National University) January 14, 2025 22 / 38

Formalisation (Meta-theory)
Fact. For any set Γ of L-formulae and any L-formula φ,

↿Γ ⊢ ↿φ ↔ Γ ⊢ φ.

Proof.
(⇐) By induction on proof.
(⇒) By the Deduction Theorem, it is sufficient to show ∅ ⊢ ↿φ → ∅ ⊢ φ.

Let shift (X) := [vi 7→ v2i, c̄ 7→ v2c̄+1]X—i.e.,

shift (vi) := v2i, shift (c̄) := v2c̄+1, and shift (∀̇vi ψ) := ∀̇v2i (shift (ψ)).

Then, by induction on proof [] A, the following can be shown:

(∀A : frmL′)(∅ ⊢ A → ∅ ⊢ shift (A)).

Now, noting ↿([i 7→ vi/2](shift (↿φ))) ≡α ↿φ, it is possible to derive

∅ ⊢ ↿φ =⇒ ∅ ⊢ shift (↿φ) =⇒ ∅ ⊢ [i 7→ vi/2](shift (↿φ)) =⇒ ∅ ⊢ φ.

K. Lim (Chonnam National University) January 14, 2025 23 / 38

Formalisation (Meta-theory)
Fact. For any set Γ of L-formulae and any L-formula φ,

↿Γ ⊢ ↿φ ↔ Γ ⊢ φ.

Proof.
(⇐) By induction on proof.
(⇒) By the Deduction Theorem, it is sufficient to show ∅ ⊢ ↿φ → ∅ ⊢ φ.

Let shift (X) := [vi 7→ v2i, c̄ 7→ v2c̄+1]X—i.e.,

shift (vi) := v2i, shift (c̄) := v2c̄+1, and shift (∀̇vi ψ) := ∀̇v2i (shift (ψ)).

Then, by induction on proof [] A, the following can be shown:

(∀A : frmL′)(∅ ⊢ A → ∅ ⊢ shift (A)).

Now, noting ↿([i 7→ vi/2](shift (↿φ))) ≡α ↿φ, it is possible to derive

∅ ⊢ ↿φ =⇒ ∅ ⊢ shift (↿φ) =⇒ ∅ ⊢ [i 7→ vi/2](shift (↿φ)) =⇒ ∅ ⊢ φ.

K. Lim (Chonnam National University) January 14, 2025 23 / 38

Formalisation (Meta-theory)

Definition. We are going to define a sequence ⟨θn⟩n∈N of L′-formulae, which
will be called the sequence of Henkin axioms.
Let ⟨(xn, φn)⟩n∈N be a fixed enumeration of pairs, where xn is an individual
variable and φn is an L′-formula. For n ∈ N, define

θn := ([c̄n/xn]φn) →̇ (∀̇xn φn),

where c̄n is the first of the Henkin constant symbols not occurring in φn or θk

for any k < n.
Details. To refer to the Henkin axioms θk for k < n,

memoisation was employed.

That is, I defined a sequence

⟨((θn−1, θn−2, · · · , θ0), (c̄n−1, c̄n−2, · · · , c̄0))⟩n∈N

of pairs consisting of a vector of Henkin axioms and a vector of Henkin
constants.

K. Lim (Chonnam National University) January 14, 2025 24 / 38

Formalisation (Meta-theory)
Fact. Define ⊥̇ := ¬̇(∀̇v0 (v0 =̇ v0)). Then, for any set Γ of L-formulae,

Γ ⊢ ⊥̇ ↔ {θn | n ∈ N} ∪ ↿Γ ⊢ ⊥̇ .

Proof.
(⇒) Γ ⊢ ⊥̇ =⇒ ↿Γ ⊢ ⊥̇ =⇒ {θn | n ∈ N} ∪ ↿Γ ⊢ ⊥̇.
(⇐) Let Γn := {θk | k < n} ∪ ↿Γ. Then {θn | n ∈ N} ∪ ↿Γ ⊢ ⊥̇ ↔ (∃n ∈ N)(Γn ⊢ ⊥̇).

Thus, it is enough to show (∀n ∈ N)(Γn ⊢ ⊥̇ → ↿Γ ⊢ ⊥̇). This follows from

Γn+1 ⊢ ⊥̇ =⇒ Γn ⊢ ¬̇ θn =⇒ (Γn ⊢ [c̄n/xn]φn) ∧ (Γn ⊢ ¬̇(∀̇xφn))

=⇒ (ψ⃗ ⊢ [c̄n/xn]φn) ∧ (Γn ⊢ ¬̇(∀̇xφn))

=⇒ ([y/c̄n]ψ⃗ ⊢ [y/c̄n][c̄n/xn]φn) ∧ (Γn ⊢ ¬̇(∀̇xn φn))

=⇒ (ψ⃗ ⊢ ∀̇xn φn) ∧ (Γn ⊢ ¬̇(∀̇xn φn)) =⇒ Γn ⊢ ⊥̇,

where ψ⃗ ⊆ Γn, ψ⃗ ⊢ [c̄n/xn]φn, and y /∈ FV(ψ⃗ ++ [∀̇xn φn; [c̄n/xn]φn]).

K. Lim (Chonnam National University) January 14, 2025 25 / 38

Formalisation (Meta-theory)
Fact. Define ⊥̇ := ¬̇(∀̇v0 (v0 =̇ v0)). Then, for any set Γ of L-formulae,

Γ ⊢ ⊥̇ ↔ {θn | n ∈ N} ∪ ↿Γ ⊢ ⊥̇ .

Proof.
(⇒) Γ ⊢ ⊥̇ =⇒ ↿Γ ⊢ ⊥̇ =⇒ {θn | n ∈ N} ∪ ↿Γ ⊢ ⊥̇.
(⇐) Let Γn := {θk | k < n} ∪ ↿Γ. Then {θn | n ∈ N} ∪ ↿Γ ⊢ ⊥̇ ↔ (∃n ∈ N)(Γn ⊢ ⊥̇).

Thus, it is enough to show (∀n ∈ N)(Γn ⊢ ⊥̇ → ↿Γ ⊢ ⊥̇). This follows from

Γn+1 ⊢ ⊥̇ =⇒ Γn ⊢ ¬̇ θn =⇒ (Γn ⊢ [c̄n/xn]φn) ∧ (Γn ⊢ ¬̇(∀̇xφn))

=⇒ (ψ⃗ ⊢ [c̄n/xn]φn) ∧ (Γn ⊢ ¬̇(∀̇xφn))

=⇒ ([y/c̄n]ψ⃗ ⊢ [y/c̄n][c̄n/xn]φn) ∧ (Γn ⊢ ¬̇(∀̇xn φn))

=⇒ (ψ⃗ ⊢ ∀̇xn φn) ∧ (Γn ⊢ ¬̇(∀̇xn φn)) =⇒ Γn ⊢ ⊥̇,

where ψ⃗ ⊆ Γn, ψ⃗ ⊢ [c̄n/xn]φn, and y /∈ FV(ψ⃗ ++ [∀̇xn φn; [c̄n/xn]φn]).

K. Lim (Chonnam National University) January 14, 2025 25 / 38

Formalisation (Meta-theory)

Notation. For Γ : frmL′ → Prop, denote

ThL′(Γ) := {φ : frmL′ | Γ ⊢ φ} .

Definition. A set ∆ of L′-formulae is said to be maximally consistent if it
satisfies the following conditions simultaneously:

1 ∆ ⊬ ⊥̇.
2 For any set ∆′ of L′-formulae with ∆ ⊆ ∆′,

∆′ ⊬ ⊥̇ → ∆ = ∆′.

Now, we let Γ be a set of L-formulae with Γ ⊬ ⊥̇ and will construct a
maximally consistent set ∆ of L′-formulae such that

{θn | n ∈ N} ∪ ↿Γ ⊆ ∆.

K. Lim (Chonnam National University) January 14, 2025 26 / 38

Formalisation (Meta-theory)

Let ⟨ψn⟩n∈N be a fixed enumeration of L′-formulae. Define ⟨∆n⟩n∈N by
∆0 := ThL′({θn | n ∈ N} ∪ ↿Γ),

∆n+1 :=
{

ThL′({ψn} ∪ ∆n), if {ψn} ∪ ∆n ⊢ ⊥̇ ↔ ∆n ⊢ ⊥̇;
ThL′(∆n), otherwise.

Now, take ∆ :=
⋃

n∈N ∆n. Then ∆ is maximally consistent and so

φ ∈ ∆ ↔ ∆ ⊢ φ

for any L′-formula φ. Furthermore, even without the law of excluded middle,
for any L′-formula A, (¬̇A) /∈ ∆ → A ∈ ∆;
for any L′-formulae A and B, (A →̇ B) ∈ ∆ ↔ (A ∈ ∆ → B ∈ ∆); and
for any L′-formula A and any individual variable x,

(∀̇xA) ∈ ∆ ↔ (∀t : trmL′)([t/x]A ∈ ∆).

K. Lim (Chonnam National University) January 14, 2025 27 / 38

Formalisation (Meta-theory)

Theorem. The Model Existence Theorem.
Define a structure A of L′ by

|A| := trmL′,
t1 ∼|A| t2 := ∆ ⊢ t1 =̇ t2,
fA := t⃗ 7→ f t⃗,
cA := c,
RA := t⃗ 7→ ∆ ⊢ R t⃗,

and ρ := i 7→ vi. Then, for any L′-formula φ,

φ ∈ ∆ ↔ JφKAρ .

Hence, (A, ρ) |= ∆ and so (A, ρ) |= ↿Γ.

Proof.
By strong induction on the height of φ. This theorem can be proved without
the law of excluded middle.

K. Lim (Chonnam National University) January 14, 2025 28 / 38

Formalisation (Meta-theory)

Theorem. The Model Existence Theorem.
Define a structure A of L′ by

|A| := trmL′,
t1 ∼|A| t2 := ∆ ⊢ t1 =̇ t2,
fA := t⃗ 7→ f t⃗,
cA := c,
RA := t⃗ 7→ ∆ ⊢ R t⃗,

and ρ := i 7→ vi. Then, for any L′-formula φ,

φ ∈ ∆ ↔ JφKAρ .

Hence, (A, ρ) |= ∆ and so (A, ρ) |= ↿Γ.

Proof.
By strong induction on the height of φ. This theorem can be proved without
the law of excluded middle.

K. Lim (Chonnam National University) January 14, 2025 28 / 38

Formalisation (Meta-theory)

Theorem. The Countable Completeness Theorem.
For any set X of L-formulae and any L-formula b,

X ⊨ b → X ⊢ b.

Proof.
Put Γ := {¬̇ b} ∪X. Assume X ⊬ b. Then Γ ⊬ ⊥̇. Restricting the structure A
of L′ obtained by the Model Existence Theorem to L yields Γ ⊭ ⊥̇, which
contradicts the assumption X ⊨ b. Therefore, we can conclude that the
assumption X ⊬ b is false and finally obtain X ⊢ b.

K. Lim (Chonnam National University) January 14, 2025 29 / 38

Formalisation (Meta-theory)

Theorem. The Countable Completeness Theorem.
For any set X of L-formulae and any L-formula b,

X ⊨ b → X ⊢ b.

Proof.
Put Γ := {¬̇ b} ∪X. Assume X ⊬ b. Then Γ ⊬ ⊥̇. Restricting the structure A
of L′ obtained by the Model Existence Theorem to L yields Γ ⊭ ⊥̇, which
contradicts the assumption X ⊨ b. Therefore, we can conclude that the
assumption X ⊬ b is false and finally obtain X ⊢ b.

K. Lim (Chonnam National University) January 14, 2025 29 / 38

Comparison

Comparison with Ilik (2010).
He formalised in the first chapter of his thesis the completeness theorem of
classical natural deduction for Tarski’s semantics, but the proof was
incomplete.

K. Lim (Chonnam National University) January 14, 2025 30 / 38

Comparison

Comparison with Herberlin, Kim, and Lee (2017).
They formalised the Weak Completeness Theorem of the Gentzen-style
sequent calculus LJT for Kripke’s semantics instead of Tarski’s semantics.

K. Lim (Chonnam National University) January 14, 2025 31 / 38

Comparison

Comparison with Forster, Kirst, and Wehr (2021).
They formalised the completeness theorem of classical natural deduction.
However, their setting, based on de Bruijn index, makes it difficult to use as a
framework.

K. Lim (Chonnam National University) January 14, 2025 32 / 38

Comparison

Comparison with From (2022).
She formalised the completeness theorem of a Hilbert calculus while using de
Bruijn index. However, there is a side condition. The main theorem of the
study is

∅ ⊢ φ ↔ ∅ ⊨ φ.

K. Lim (Chonnam National University) January 14, 2025 33 / 38

Comparison

Comparison with Herberlin and Ilik (2024).
They formalised the completeness theorem for classical first-order languages
not equipped with Leibniz equality. They also modified Henkin’s method.

K. Lim (Chonnam National University) January 14, 2025 34 / 38

Conclusion

The Main Result. I formalised classical first-order logic equipped with
Leibniz equality using Coq 8.18.0, assuming only the law of excluded middle.

A Coq Script for Checking Theorem Statements and Used Axioms.
Check @HilbertCalculus sound.
Print Assumptions HilbertCalculus sound.
Check @HilbertCalculus complete.
Print Assumptions HilbertCalculus complete.

K. Lim (Chonnam National University) January 14, 2025 35 / 38

Conclusion

The Main Result. I formalised classical first-order logic equipped with
Leibniz equality using Coq 8.18.0, assuming only the law of excluded middle.

Figure: The result from the script.

K. Lim (Chonnam National University) January 14, 2025 35 / 38

Conclusion

The Contributions.
The fact that, for any set Γ of L-formulae and any L-formula φ,

↿Γ ⊢ ↿φ ↔ Γ ⊢ φ,

had not been formalised in any former studies.
My formal proof of the Countable Completeness Theorem closely follows
the approach presented in Enderton’s mathematical text, ensuring its
fidelity to orthodox methodology.
While there are many studies that formalise natural deduction, Hilbert
calculi have received comparatively less attention. This makes my
formalisation a significant contribution.

K. Lim (Chonnam National University) January 14, 2025 36 / 38

Conclusion

Future Work.
The practical applicability of the framework such as PA and ZF will be
explored.
Since both systems have axiom schemata, a tool will be made for
handling meta-variables.
The Completeness Theorem for first-order languages with cardinalities
greater than ℵ0 will be formally proved as well.

K. Lim (Chonnam National University) January 14, 2025 37 / 38

Thank you for listening!
E-mail: gijungdduk@naver.com

GitHub: github.com/KiJeong-Lim/Fol-archived

K. Lim (Chonnam National University) January 14, 2025 38 / 38

