Graphs on Infinite Cardinals: The Erdős–Dushnik–Miller theorem

Jisun Baek

Yonsei University

The Fourth Korea Logic Day January 14, 2025

 \leftarrow \Box

э

 QQ

Ordinal and Cardinal

What is the smallest number that is 'greater than' every natural number?

Definition

Define 0 := ∅, 1 := *{*0*}*, and *n* := *{*0*,* 1*, . . . , n −* 1*}*. *The set of natural numbers* N is the smallest set containing 0 and closed under successor.

The usual ordering $n < m$ is equivalent to $n \in m$.

Definition (Informal)

 ω is the smallest number which is greater than every natural number, which is defined as $\{0, 1, \ldots\} (= \mathbb{N})$. Ordinals are defined as the same $rule, e.g., \alpha^+ = \alpha \cup \{\alpha\}.$

 QQ

Facts

- ¹ *(AC) Every set can be enumerated using an ordinal index.*
- ² *∈ in ordinals is well-ordering, i.e., any subset has a least element.*
- ³ *Thus, there is no infinite descending chain of ordinals.*

 \blacksquare

 QQ

Some ordinal numbers are special, in the sense that they can measure the 'size' of a set.

Definition

Card(A) denotes the least ordinal α such that there is a bijective function between *α* and *A*.

For example, ω is a cardinal that measures countable set. But ordinals $\omega + 1$ and ω^{ω} are not a cardinal, since $\omega + 1 \approx \omega \approx \omega^{\omega}$.

From now on, *κ* denotes an infinite cardinal.

Motivation

Exercise (I.19, Set Theory by Kenneth Kunen)

Let κ be an infinite cardinal and \triangleleft any well-ordering of κ . Show that there is an $X \subset \kappa$ such that $|X| = \kappa$, and \lhd and \in agree on X.

e.g. $\kappa = \aleph_1$, the first uncountable cardinal.

 QQQ

CONVERTED A BALLEY

Motivation

Exercise (I.19, Set Theory by Kenneth Kunen)

Let κ be an infinite cardinal and \triangleleft any well-ordering of κ . Show that there is an $X \subset \kappa$ such that $|X| = \kappa$, and \lhd and \in agree on X.

e.g. $\kappa = \aleph_1$, the first uncountable cardinal.

Find an increasing \triangleleft -chain of size κ while no infinite decreasing \triangleleft -chain.

Ramsey Property?

 QQQ

KONKAPRA BRADE

Exercise (I.19, Set Theory by Kenneth Kunen)

Let κ be an infinite cardinal and \triangleleft any well-ordering of κ . Show that there is an $X \subset \kappa$ such that $|X| = \kappa$, and \lhd and \in agree on X.

Define a graph *G* on κ , where α and β are adjacent if their orders agree.

$$
E(\alpha, \beta) = (\alpha \in \beta \land \alpha \lhd \beta) \lor (\beta \in \alpha \land \beta \lhd \alpha)
$$

Increasing ◁-chain *⇔* Clique Decreasing ◁-chain *⇔* Independent set

Exercise (I.19, Set Theory by Kenneth Kunen)

Let κ be an infinite cardinal and \triangleleft any well-ordering of κ . Show that there is an $X \subset \kappa$ such that $|X| = \kappa$, and \lhd and \in agree on X.

Theorem (Erdős–Dushnik–Miller, 1941)

Any graph G on an infinite cardinal κ has a size κ clique or a size ω independent set. (Equivalently, κ independent set or ω clique)

Or, using arrow notation,

Theorem (Erdős–Dushnik–Miller, 1941)

 $\kappa \to (\kappa, \omega)^2$ *holds, i.e., a* 2-coloring of κ^2 *has a monochromatic subset of size κ or ω.*

It is an unbalanced generalizaion of the Ramsey theorem, $\omega \to (\omega)^r_k$.

 QQ

Proof of EDM Theorem

Claim

Let $G = (V, E)$ *be a graph on* $V = \kappa$ *. If G does not have a size* κ *independent set, then there is a clique of size ω.*

Lemma

If G does not have a size κ independent set, then there exists a vertex adjacent to κ many elements.

Proof of the claim.

If G does not have a size κ independent set, then there exists a vertex adjacent to κ many elements.

Proof.

Assume there is no such vertex. Define $N_H(x)$ a neighborhood of x in *H*.

 \leftarrow \Box

不是 医

If G does not have a size κ independent set, then there exists a vertex adjacent to κ many elements.

Proof.

Assume there is no such vertex. Define *NH*(*x*) a neighborhood of *x* in *H*.

If G does not have a size κ independent set, then there exists a vertex adjacent to κ many elements.

Proof.

Assume there is no such vertex. Define $N_H(x)$ a neighborhood of x in *H*.

 \leftarrow \Box

If G does not have a size κ independent set, then there exists a vertex adjacent to κ many elements.

Proof.

Assume there is no such vertex. Define $N_H(x)$ a neighborhood of x in *H*.

€ □ E

Þ

 QQ

Þ

If G does not have a size κ independent set, then there exists a vertex adjacent to κ many elements.

Proof.

Assume there is no such vertex. Define $N_H(x)$ a neighborhood of x in *H*.

 ${x_\alpha : \alpha \in \kappa}$ is an independent set. Contradiction.

 \leftarrow \equiv \sim

€ □ E

 QQ

Wait, are we sure that we can choose x_α for all $\alpha \in \kappa$?

What if vertices run out in the middle?

$$
\exists \alpha \in \kappa \text{ such that } \mathsf{Card}\left(\bigcup_{\gamma=0}^{\alpha} X_{\gamma}\right)=\kappa.
$$

Such cardinals are called *singular*, e.g, *ℵ^ω* = ∪ *n∈ω ℵn*. If it does not happen, it is called *regular*.

 Ω

Proof of EDM theorem: regular case

Claim

Let $G = (V, E)$ *be a graph on* $V = \kappa$, *a regular cardinal. If G does not have a size κ independent set, then there is a clique of size ω.*

Lemma

Let κ be a regular cardinal. If G does not have a size κ independent set, then there exists a vertex adjacent to κ many elements.

For a singular case, it is still true, but we need more (complicated) argument.

 200

ARANES

Theorem (Erdős–Dushnik–Miller, 1941) $\kappa \to (\kappa, \omega)^2$ *holds.*

Theorem (Erdős–Dushnik–Miller, 1981)

 $\kappa \to (\kappa, \omega+1)^2$ holds for an uncountable regular cardinal $\kappa.$

 QQQ

 $\mathbf{a} \oplus \mathbf{b} \rightarrow \mathbf{c} \oplus \mathbf{b} \rightarrow \mathbf{c} \oplus \mathbf{b} \rightarrow \mathbf{c}$

 \leftarrow \Box

Proof of EDM theorem '81

Theorem (Erdős–Dushnik–Miller, 1981)

 $\kappa \to (\kappa, \omega+1)^2$ holds for an uncountable regular cardinal $\kappa.$

Proof stekch.

Let $G = (V, E)$ be a graph on $V = \kappa$. Assume no size κ independent set. Define a tree $\langle T, \prec \rangle$ of length ω , and a function $S(X) \subseteq \kappa$ for each $X \in T$, where *X* is a maximal independent subset of *S*(*X*).

 QQQ

Proof of EDM theorem '81

Theorem (Erdős–Dushnik–Miller, 1981)

 $\kappa \to (\kappa, \omega+1)^2$ holds for an uncountable regular cardinal $\kappa.$

Proof stekch.

Let $G = (V, E)$ be a graph on $V = \kappa$. Assume no size κ independent set. Define a tree $\langle T, \prec \rangle$ of length ω , and a function $S(X) \subseteq \kappa$ for each $X \in T$, where *X* is a maximal independent subset of *S*(*X*). Namely,

- \bullet X_0 is a maximal independent set of *V*, and $S(X_0) = V$.
- **2** For each $\xi \in X \in \mathcal{T}[n]$, put $S_{\xi}(X) = N_{\mathcal{V}}(\xi) \cap (S(X) \setminus (\text{sup}(X) + 1))$.

■ Let X_f be a maximal independent set of $S'_\xi(X) = S_\xi(X) \setminus \quad \bigcup$ *η<ξ,η∈X Sη*(*X*).

 \bullet Put $\{X_\xi:\xi\in X\}$ at $\mathcal{T}[n+1]$, and let $S(X_\xi)=S_\xi'.$

 QQ

KONKAPRA BRADE

 QQ

K ロ ト K 個 ト K 差 ト K 差 ト 一番

 2990

K ロ × K 御 × K 著 × K 著 × 「著

 299

重

イロトメ 御 トメ 差 トメ 差 ト

 299

メロトメ 御 トメ 君 トメ 君 トッ 君

We can prove \overline{T} has an infinite branch $H = \{X^n\}_{n < \omega}$ such that $∩$ {*S*(*X*) : *X* ∈ *H*} ≠ 0*.*

Then $\{\xi_n\}_{n \in \omega+1}$ is a clique of order type $\omega + 1$.

 $\sqrt{2}a$

 $\mathbf{y} = \mathbf{y} \oplus \mathbf{y} \oplus \mathbf{y} \oplus \mathbf{y}$

Further Results

Question

Which singular cardinal κ satisfies $\kappa \to (\kappa, \omega+1)^2 ?$

- **1** If cf(κ) = ω , then it does not hold.
- 2 If cf $(\kappa) > \omega$ and κ is a strong limit cardinal, i.e., $\forall \lambda < \kappa (2^\lambda < \kappa),$ then it is true.
- **3** In 2009, Shelah proved that if $cf(\kappa) > \omega$ and $2^{cf(\kappa)} < \kappa$, then it is true.

 QQQ

æ.

- 4 国家 4 国家

References

- [1] Andrés E. Caicedo. *Distinct well-orderings of the same set*. [https://mathoverflow.net/questions/40507/distinct-well](https://mathoverflow.net/questions/40507/distinct-well-orderings-of-the-same-set)[orderings-of-the-same-set](https://mathoverflow.net/questions/40507/distinct-well-orderings-of-the-same-set). [Online; accessed 12-Jan-2025]. 2010.
- [2] Paul Erdös et al. *Combinatorial set theory: partition relations for cardinals*. North Holland, 1984.
- [3] Karel Hrbacek and Thomas Jech. *Introduction to set theory, revised and expanded*. Crc Press, 2017.
- [4] Kenneth Kunen. *Set theory: an introduction to independence proofs*. Elsevier, 2014.
- [5] *Ordinal number*. https://en.wikipedia.org/wiki/Ordinal_number. [Online; accessed 13-Jan-2025].
- [6] Saharon Shelah. "The Erdős–Rado Arrow for Singular Cardinals". In: *Canadian Mathematical Bulletin* 52.1 (2009), pp. 127–131.

E

 QQ

イロト イ押ト イヨト イヨト