Graphs on Infinite Cardinals: The Erdős–Dushnik–Miller theorem

Jisun Baek

Yonsei University

The Fourth Korea Logic Day January 14, 2025

э

Ordinal and Cardinal

What is the smallest number that is 'greater than' every natural number?

Definition

Define $0 := \emptyset$, $1 := \{0\}$, and $n := \{0, 1, ..., n-1\}$. The set of natural numbers \mathbb{N} is the smallest set containing 0 and closed under successor.

The usual ordering n < m is equivalent to $n \in m$.

Definition (Informal)

 ω is the smallest number which is greater than every natural number, which is defined as $\{0, 1, ...\} (= \mathbb{N})$. Ordinals are defined as the same rule, e.g., $\alpha^+ = \alpha \cup \{\alpha\}$.

Facts

- (AC) Every set can be enumerated using an ordinal index.
- $\mathbf{Q} \in in ordinals is well-ordering, i.e., any subset has a least element.$
- Thus, there is no infinite descending chain of ordinals.

Some ordinal numbers are special, in the sense that they can measure the 'size' of a set.

Definition

Card(A) denotes the least ordinal α such that there is a bijective function between α and A.

For example, ω is a cardinal that measures countable set. But ordinals $\omega + 1$ and ω^{ω} are not a cardinal, since $\omega + 1 \approx \omega \approx \omega^{\omega}$.

From now on, κ denotes an infinite cardinal.

Motivation

Exercise (I.19, Set Theory by Kenneth Kunen)

Let κ be an infinite cardinal and \triangleleft any well-ordering of κ . Show that there is an $X \subset \kappa$ such that $|X| = \kappa$, and \triangleleft and \in agree on X.

e.g. $\kappa = \aleph_1$, the first uncountable cardinal.

- 3

ヘロト ヘヨト ヘヨト

Motivation

Exercise (I.19, Set Theory by Kenneth Kunen)

Let κ be an infinite cardinal and \triangleleft any well-ordering of κ . Show that there is an $X \subset \kappa$ such that $|X| = \kappa$, and \triangleleft and \in agree on X.

e.g. $\kappa = \aleph_1$, the first uncountable cardinal.

Find an increasing \triangleleft -chain of size κ while no infinite decreasing \triangleleft -chain.

Ramsey Property?

イロト 不得 トイヨト イヨト 二日

Exercise (I.19, Set Theory by Kenneth Kunen)

Let κ be an infinite cardinal and \triangleleft any well-ordering of κ . Show that there is an $X \subset \kappa$ such that $|X| = \kappa$, and \triangleleft and \in agree on X.

Define a graph G on κ , where α and β are adjacent if their orders agree.

$$E(\alpha,\beta) = (\alpha \in \beta \land \alpha \lhd \beta) \lor (\beta \in \alpha \land \beta \lhd \alpha)$$

 $\begin{array}{rcl} \mbox{Increasing} \lhd\mbox{-chain} & \Leftrightarrow & \mbox{Cl} \\ \mbox{Decreasing} \lhd\mbox{-chain} & \Leftrightarrow & \mbox{In} \\ \end{array}$

Clique Independent set

Exercise (I.19, Set Theory by Kenneth Kunen)

Let κ be an infinite cardinal and \triangleleft any well-ordering of κ . Show that there is an $X \subset \kappa$ such that $|X| = \kappa$, and \triangleleft and \in agree on X.

Theorem (Erdős–Dushnik–Miller, 1941)

Any graph G on an infinite cardinal κ has a size κ clique or a size ω independent set. (Equivalently, κ independent set or ω clique)

Or, using arrow notation,

Theorem (Erdős–Dushnik–Miller, 1941)

 $\kappa \to (\kappa, \omega)^2$ holds, i.e., a 2-coloring of κ^2 has a monochromatic subset of size κ or ω .

It is an unbalanced generalization of the Ramsey theorem, $\omega \to (\omega)_k^r$.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Proof of EDM Theorem

Claim

Let G = (V, E) be a graph on $V = \kappa$. If G does not have a size κ independent set, then there is a clique of size ω .

Lemma

If G does not have a size κ independent set, then there exists a vertex adjacent to κ many elements.

Proof of the claim.

If G does not have a size κ independent set, then there exists a vertex adjacent to κ many elements.

Proof.

Assume there is no such vertex. Define $N_H(x)$ a neighborhood of x in H.

9/16

If G does not have a size κ independent set, then there exists a vertex adjacent to κ many elements.

Proof.

Assume there is no such vertex. Define $N_H(x)$ a neighborhood of x in H.

If G does not have a size κ independent set, then there exists a vertex adjacent to κ many elements.

Proof.

Assume there is no such vertex. Define $N_H(x)$ a neighborhood of x in H.

If G does not have a size κ independent set, then there exists a vertex adjacent to κ many elements.

Proof.

Assume there is no such vertex. Define $N_H(x)$ a neighborhood of x in H.

If G does not have a size κ independent set, then there exists a vertex adjacent to κ many elements.

Proof.

Assume there is no such vertex. Define $N_H(x)$ a neighborhood of x in H.

 $\{x_{\alpha} : \alpha \in \kappa\}$ is an independent set. Contradiction.

< 47 ▶

Wait, are we sure that we can choose x_{α} for all $\alpha \in \kappa$?

What if vertices run out in the middle?

$$\exists \ \alpha \in \kappa \text{ such that } \mathsf{Card}\left(\bigcup_{\gamma=0}^{\alpha} X_{\gamma}\right) = \kappa.$$

Such cardinals are called *singular*, e.g, $\aleph_{\omega} = \bigcup_{n \in \omega} \aleph_n$. If it does not happen, it is called *regular*.

Jisun Baek (Yonsei University)

Proof of EDM theorem: regular case

Claim

Let G = (V, E) be a graph on $V = \kappa$, a <u>regular cardinal</u>. If G does not have a size κ independent set, then there is a clique of size ω .

Lemma

Let κ be a regular cardinal. If G does not have a size κ independent set, then there exists a vertex adjacent to κ many elements.

For a singular case, it is still true, but we need more (complicated) argument.

・ 何 ト ・ ヨ ト ・ ヨ ト

Theorem (Erdős–Dushnik–Miller, 1941) $\kappa \rightarrow (\kappa, \omega)^2$ holds.

Theorem (Erdős–Dushnik–Miller, 1981) $\kappa \rightarrow (\kappa, \omega + 1)^2$ holds for an uncountable regular cardinal κ .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Proof of EDM theorem '81

Theorem (Erdős–Dushnik–Miller, 1981)

 $\kappa \rightarrow (\kappa, \omega + 1)^2$ holds for an uncountable regular cardinal κ .

Proof stekch.

Let G = (V, E) be a graph on $V = \kappa$. Assume no size κ independent set. Define a tree $\langle T, \prec \rangle$ of length ω , and a function $S(X) \subseteq \kappa$ for each $X \in T$, where X is a maximal independent subset of S(X).

・ 何 ト ・ ヨ ト ・ ヨ ト

Proof of EDM theorem '81

Theorem (Erdős–Dushnik–Miller, 1981)

 $\kappa
ightarrow (\kappa, \omega + 1)^2$ holds for an uncountable regular cardinal κ .

Proof stekch.

Let G = (V, E) be a graph on $V = \kappa$. Assume no size κ independent set. Define a tree $\langle T, \prec \rangle$ of length ω , and a function $S(X) \subseteq \kappa$ for each $X \in T$, where X is a maximal independent subset of S(X). Namely,

- X_0 is a maximal independent set of V, and $S(X_0) = V$.
- $\textbf{ Sor each } \xi \in X \in \mathcal{T}[n], \text{ put } S_{\xi}(X) = N_{V}(\xi) \cap (S(X) \setminus (\sup(X) + 1)).$

• Let X_{ξ} be a maximal independent set of $S'_{\xi}(X) = S_{\xi}(X) \setminus \bigcup_{\eta < \xi, \eta \in X} S_{\eta}(X).$

• Put $\{X_{\xi}:\xi\in X\}$ at T[n+1], and let $S(X_{\xi})=S'_{\xi}$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

æ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We can prove T has an infinite branch $H = \{X^n\}_{n < \omega}$ such that $\bigcap \{S(X) : X \in H\} \neq 0.$

Then $\{\xi_n\}_{n\in\omega+1}$ is a clique of order type $\omega+1$.

Further Results

Question

Which singular cardinal κ satisfies $\kappa \to (\kappa, \omega + 1)^2$?

- If $cf(\kappa) = \omega$, then it does not hold.
- 2 If $cf(\kappa) > \omega$ and κ is a strong limit cardinal, i.e., $\forall \lambda < \kappa(2^{\lambda} < \kappa)$, then it is true.
- (a) In 2009, Shelah proved that if $cf(\kappa) > \omega$ and $2^{cf(\kappa)} < \kappa$, then it is true.

• • = • • = •

References

- Andrés E. Caicedo. Distinct well-orderings of the same set. https://mathoverflow.net/questions/40507/distinct-wellorderings-of-the-same-set. [Online; accessed 12-Jan-2025]. 2010.
- [2] Paul Erdös et al. *Combinatorial set theory: partition relations for cardinals.* North Holland, 1984.
- [3] Karel Hrbacek and Thomas Jech. Introduction to set theory, revised and expanded. Crc Press, 2017.
- [4] Kenneth Kunen. Set theory: an introduction to independence proofs. Elsevier, 2014.
- [5] Ordinal number. https://en.wikipedia.org/wiki/Ordinal_number. [Online; accessed 13-Jan-2025].
- [6] Saharon Shelah. "The Erdős–Rado Arrow for Singular Cardinals". In: *Canadian Mathematical Bulletin* 52.1 (2009), pp. 127–131.

3

< □ > < □ > < □ > < □ > < □ > < □ >