Real functions are continuous,
continuously, computationally

Sewon Park (Kyoto University)

based on j.w.w.
Holger Thies (Kyoto U.) and Michal Koneény (Aston U.)

The Fourth Korea Logic Day 2025
January 13-15, 2025
Changwon, Korea

0/27

Overview

Real functions are continuous,
continuously, computationally

e Part I: Introduce exact real-number computation: What does

it mean to compute real numbers and functions?

e Part II: (1) Introduce a (constructive) dependent type theory
as a language of expressing and reasoning about “are"

(2) And present an axiomatic formalization of real numbers
and functions (whose interpretation corresponds to the exact

real-number computation, “computing real functions”)

e Part IlI: Prove that all real functions are continuously
continuous (in the type theory) and discuss possible

applications

Part |

Motivation: Correct Numerical Computations

e Computers model and make decisions for real-world problems
interacting with the physical world.

v WP article

INNOVATIONS

The military wants Al to replace human
decision-making in battle

The development of a medical triage program raises a question: When lives are at stake, should artificial intelligence be
involved?

By Pranshu Verma
3
March 29, 2022 ot 700 a.m. EOT

e Correctness in safety-critical applications; e.g., Ariane 5 A

e Infinite data such as real numbers, functions, spaces
ubiquitously used to represent physical quantities such as
distances, temperature, trajectory, areas, etc

> Correctness in real number (and higher) computations

becomes more and more important! 2/27

Floating-Point Arithmetic

Common practice: Floating-point computation.
5|gn exponent (8 blts) fraction (23 bits)

I I [1]a]afa]s |0|0I0|1|0|0|0|0|0|OIOI0|0|0I0|0|°|0I0|0|0|0|0|0|0I 0.15625
31 30 23 22 (bit index) 0

Inevitable round-off errors:

>>> x = (0.1 +0.2) +0.3 >>> x

>>>y =0.1+ (0.2 +0.3) 0.6000000000000001
>>> x ==y >>> y

False 0.6

due to fundamental limitation in expressivity of finite precision
e Discrepancy between intuitive semantics and actual machine
semantics makes it challenging to obtain correct programs
e When round-off errors accumulate (e.g. in an iterative

function system) computation can be totally meaningless

3/27

Example - Logistic Map

Xn+1 = 3.75- %, - (L — x,) when xp=0.5

o-REAL Xgr=-0:679303

427

Instead: Exact Real Computation

e Infinite representations for real numbers [Weioo]
E.g., rationals g1, go, - - - expresses x < Vi. |x — q;| <27
exact computations by type-2 machines
E.g., x + y is realized by (p;)i, (qi)i — (pi+1 + Giv1)i
e Hide representation-specific details
~ Abstract data type for exact real numbers:
>>> print(pi, 10) # print 271° approximation of =
3.14159 £ 271°
>>> print(pi, 100)
3.14159265358979323846 - - - 2719 # for high-precision result

>>> pi + sqrt(2) # evaluates exactly to w + /2
>>> print(pi + sqrt(2), p) # prints 2P approx. to w4+ /2

e Expectation: intuitive reasoning with reals as in textbooks

5/27

Computable and Uncomputable Primitives

e Infinite representations for real numbers [Weioo]
(q1,92,...) € QN expresses x < Vi. |x — q;| <277
e The arithmetical operations (4, —, X, +) are computable

A

(exactly without rounding errors.)

e However, computing x < y fails when x = y:

(pi)ien < (gi)ien =
for i = 0 — oo:

if pi <@ gqi—27": return True
else if qi <qg pi—2"": return False
else: continue

More precisely, x < y diverges when x =y w
representation and whichever algorithm is used.
e Parallel evaluation is used:
x<cy=(x<y+e|ly<x+e)
to nondeterministically, but totally approximate x < y e

Verification in Exact Real Computation

e Programming with real numbers (as they were the familiar
abstract entities in the textbooks) carefully dealing with partial
comparisons and nondeterminism.

e In imperative paradigm: iRRAM (C++), Ariadne (C4++ and
Python), Clerical, ...
e In functional paradigm: AERN (Haskell), ...

e Imperative programs: Verification reduces to the theory of

real numbers (with help of domain theory)

] P et. al: Semantics, Specification Logic, and Hoare Logic of Exact Real
Computation (2024). Logical Methods in Computer Science

k] Andrej Bauer, P, Alex Simpson: An Imperative Language for Verified

Exact Real-Number Computation (2024). (submitted)
e Functional programs: From a (constructive) proof from
mathematical analysis, extract a correct program

B Michal Koneény, P, Holger Thies: Extracting efficient exact real number
computation from proofs in constructive type theory (2024), Journal of
Logic and Computation 7/27

cAERN

Introduces types for computational real numbers, partiality,
nondeterminism, ... and primitive operations

in a constructive dependent type theory

A constructive proofs get extracted to verified Exact Real

Computation user programs
E.g., Intermediate Value Theorem ~~ Root-finding program

A realizability interpretation as a metatheorem to prove

soundness of our axiomatization.

Implementation as the Coq library cAERN
e https://github.com/holgerthies/coq-aern
e Approximately 12,000 lines of code.
Program extraction to Haskell, using the AERN library for basic

operations on real numbers.
8/27

https://github.com/holgerthies/coq-aern

Part Il : Dependent Type Theory

Dependent Type Theory

e Base types: 0 (empty), 1 (unit), N (numbers) are types.
When A, B are types, A x B (product), A+ B (sum), A — B
(mapping) are types.

M-a:A r=b6:8B
N=inLa: A+ B N-inRb:A+B

e When B(x) is a type indexed by x : A
M(x : A). B(x) (dependent function; the space of sections) and
Y (x : A). B(x) (dependent pair; the total space) are types

MN-a:A = b:Bla/x]
I+ (a,b):¥(x:A). B(x)

e Interpret types as propositions, A+ B as AV B,
M(x : A). B(x) as Vx : A. B(x), and X(x : A). B(x) as

. _ 9/27
dx : A. B(x) ~~ language for constructive mathematics.

Constructive Proofs are Programs

“Any natural number is either odd or even”

Define (n:N)-indexed families of types:

e isEven(n:N):=X(k:N).n=k+k
e isOdd(n:N) :=%X(k:N).n=k+k+1

Then, the type below corresponds to the above statement:
M(n: N).isOdd(n) + isEven(n)
The type is the space of sections:

inL (k,-) if n=2k
inR (k,-) ifn=2k+1

f:No>n—

a program that tells us whether n is even or odd and why. W

Classical Types

Though, not all types are constructive:

e 0, 1, x = y do not carry any computational structure
e Define mA:=A — 0.

e A type Ais a classical proposition if A= ——A.

Assume that there is a universe Prop of classical propositions that
is closed under 3 and V.

Assume [(P:Prop). PV =P but not M(P:Prop). P+ —P.

Idea: put algorithms in the usual type-level,

and write verification-related specifications in Prop.

Further assume classical propositional extensionality, functional
extensionality, etc.

11/27

Naive Reals in Constructive Type Theory

e Constructive dependent type theory:
A+ B is valid = deciding A or B is computable
Y(x : A). B(x) is valid = finding x : As.t. B(x) is computable
e Certified program extraction:
M(x: A). X(y: B). R(x, y)
yields a program P : A — B s.t. ¥(x : A). ’ >4 \x
e Classical axiomatization of reals is invalid:
Trichotomy : M(x : R). (x < 0)+ (x =0) + (x > 0)
The sign test of reals is not computable

e Axiomatization of exact reals s.t.

proofs = programs in ERC framework (viz. AERN in Haskell)
12/27

“Constructive” Axiomatic Reals and Partiality

Axiom 1: There is a type R.
Axiom 2: There are terms for (0,1,...,+,—, X, <)
Axiom 3: Given x,y : R, we have
(x<y):S
where S is another axiomatic type for partial computations
Axiom 4: |:S is for termination and 71:S is for nontermination
o (x<y)=| (orwrite(x<y)l) whenx<y.
o (x<y)=1 (orwrite(x<y)T) whenx>y.
We can prove MN(x : R). (x <0)} V (x=0)V (x> 0)J : Prop

But cannot prove MN(x : R). (x <0)l + (x =0)+ (x > 0)] : Type
13/27

Axiomatic Nondeterminism

Axiom: there is a monad M : Type — Type for nondeterminism
M(s1,5:5).(s1d V s2]) — M(51¢+ Szi)

Given two partial computations sy, sp, given classically that sy or sp
terminates, we can nondeterministically decide which terminates.

Example: for any positive €:R, we can prove
Nix,y :R).M((x <y +e)l+(y <x+e)l)
but cannot prove
Mix,y :R).(x<y+e)l+(y<x+el
Axiom: Subsingletons are deterministic
M(A:Type). (M(a, b:A).a=b) > M A=A

Example: we can prove MN(x,y). (x #y) = (x <y)l +(y < x)| AT

Nondeterministic Dependent Choice

Axiom: For a nondeterministic procedure f : A — M A, iterating it
on a:A, nondeterministically yields a deterministic section
h:N— Aof f¥:(n— f"): N — M A that are precisely traces

Example: Consider f : x — {x —1,x+ 1}

traces are {h | h(0) =0, h(n+1) = h(n) £ 1} 15/27

Nondeterministic Completeness

Example: Given the unique classical description of a real number
P : R — Prop. Write x ~, P for the classical proposition saying
x:R approximates P up to 27". Then we have:

(M(n:N).ME(y:R).y =~ P) = £(x:R). P x

Proof Idea: e Each nondeterministic
f N — MR converges to y:R section h: N — R of f is a
f(n) Cauchy sequence
. e M-lifting of /im on h yields
M R limits
T .:E;-:i{!iii' e As there is at most one limit,

Subsingleton-elimination

yields the limit y 627

Nice Example

Define isMax(z,x,y) =(x>y 2 z=x)A(y >x—z=y)
as a classical predicate and prove:

M(x,y : R). X(z: R). isMax(z, x, y)
Proof.

e limit as n — oo:

o assumeM((x <y+27")+(y <x+27")) < axiom

° assume ((x <y +2"") 4+ (y <x+27"))
° case 1: x <y + 2", y approximates the max by 27"
° case 2: y < x+ 2", x approximates the max by 27"
° Y (z : R). z approximates the max by 27"

e MX(z:R). z approximates the max by 27" «+ M-lift
e Y(z:R).isMax(z,x,y) < nondeterministic completeness]

extracts to the maximum function in AERN e

Code Extraction Example

Lemma real_max_prop : real_max_prop ::
foralllxy, {z| (x >=y 2>z =x) AERN2.CReal ->
@\/\(x <y—z=y)}h AERN2.CReal ->
Proof. w}al
intros. real_max_prop =
|apply real_mslimit_P_lt. ’——> (\n ->
+ (* max is single-valued *) Prelude.id (\h -> case h of {
P.True -> ;
+ (* construct limit *) P.False -~ })
intros. (m_split x y (prec n)))

apply (mjoin (x>y — prec n)
(y>x — prec n)).
++ intros [c1|c2].
44+ (x when >y —27" x)

exists x.

+++ (* when z <y —27" %)

+-+ apply M_split.
apply prec_pos.
Defined.

What really is M? How are the axioms justified? 18/27

Assemblies

e Assembly X = (|X|,IFx) is a pair of a set |X| and a binary

relation I-xC NN x | X| that is surjective [Lon951:
V(x € |X|]). I(p € NY). ¢ IFx x
o f:|X| —|Y|is computable if there is a type-2 machine
7:C NN — NN that tracks f:
X Loy
IFx | -y

NNy T, NN
V(x € |X]). Y(p € NY). plFx x = 7(¢) IFy f(x)

e Category of assemblies & computable functions Asm(NY)
forms a locally Cartesian closed category modeling Dependent

Type Theory [Bir95] 19/27

Validity of Some Axiomatization

e Standard Cauchy assembly |[R| = R:

plkr x <= ¢(n) encodes q, € Q. |g, — x| < 27" forall n
Nondeterminism monad M : Asm(NY) — Asm(NY)
IMX| ={AC|X||A£0} ¢llmxA <= 3F(xeA). plxx
Sierpinski assembly |S| = {1,]} :

plFst = (i € N). p(i) = 0
@lrsl <= 3(i e N). (i) #0

classifies opens/semi-decidable subsets:

f:R—S <= f characterize a semi-decidable S C R

The axiom saying x < y is semi-decidable is indeed valid.

The set of axioms are valid and universal [Her99]

20/27

Part 1ll: Continuity of Continuity

Continuity Principles

e In Asm(NY), a mapping f : X — Y is by def. computable
and a function object YX consists of continuously realizable
functions from X to Y

e (Hence) the statement
all real functions are continuous as stated by Brouwer

is a valid sentence in Asm(NV)
We can assume and use it for integration, derivation, etc

How about other abstract spaces X other than R?

e The common approach is to assume the statement:
all mappings NN — N are continuous

then study NN < X to expand it to X.
e Desired: abstract and at the same time general enough

continuity principle
21/27

Continuity Principle

Axiom(Continuity): For any partial computation over sequences,
f:xXN-s

and for any sequence x : XN, when f x terminates ((f x)/) there
nondeterministically exists an index n : N that f cannot distinguish:

MN(n:N).X, =y, — (f y)
The axiom can be realized by:

function continuity (f: XN =S, x:XN):
var n:N := 0;
local function x_(m:N) =
n := max(n, m);
return xm,
let _ := f(x);
return n;

22/27

Continuous Continuity

Lemma: Any f : NN — S is continuously continuous;

i.e., there nondeterministically is 1 : NN — N s.t.

1. p is a modulus of continuity:
A(x:NN). (F x) 4= My :NN). 7, = %0 x = (F y)d
For any sequence x, when f x terminates, it is okay to read only
[t X entries around x.
2. and p is again continuous:
(NN (F x) 4= Z(n:N).M(y:NN). 7 =%, =y = pu x
For any sequence x, when f x terminates, there nondeterministically

is a number of entries n where p should give a consistent answer.

Proof Idea: prove continuity of h: NN — N by reducing it to a
Sierpinski-valued function. Then the result follows.

23/27

Main Result

Lemma: Any real function f : R — R is point-wise continuous:
M(x:R,n:N). MX(px,n:N).M(y:R). [x —y| <27Hxn — |[f x—f y| < 27"

Moreover, it is continuously continuous on Q < R;
i.e., there nondeterministically is 1 : Q x N — N s.t.

1. p is a modulus of continuity:
N(g:Q,n:N).N(y:R).|g —y| <27#@" 5 |f g—f y| < 27"
2. and p is again continuous:
M(g:Q,n:N).Z(m:N).N(r:R).|g—r| <27™ = u(qg,n) = pu(r,n)
However, Q cannot be replaced with R. In this sense, any real
function f : R — R is continuously continuous.

24/27

Proof Idea

Prove it for f : R = S:

R—F 45

Sl

Q q—q~ QN n M QN

Get continuous modulus of continuity x for fod : QN — S.
For any x:R s.t. (f x):
get nondeterministically ¢: QN such that §¢ = x (by)
obtain n:N such that ¢, = v, implies (f (@)N (by 1)
claim this n works:

e Foranyy:Rst |[x—y| <27
there classically exists 1/: QN s.t. ¢, =1, and §1) = y.
e Hence, =—(f (¢))J and indeed (f y)|.

and the modulus is continuous on Q 25/27

e Continuity is used to make X — S indeed the space of opens.

e From opens, define various classes of hyperspaces: closed,
overt, compact, overt-compact, located,

e For overt-compactness, to cover an open X — S, it is required
the obtained continuity is continuous; when modulus is not
continuous, it can fail to cover a compact interval

e E.g., in our system, we can define fractals as the (Hausdorff-)

limit and extract certified drawings:

26/27

Conclusion

In this talk, the followings were presented:
e A constructive dependent type theory as a language of exact
real number computations (cAERN project)
e Recent formalization of continuity principle and hyperspace
computations

Future work includes:
e Other applications e.g., extending the ODE solving:

B sP and Holger Thies: A Coq Formalization of Taylor Models and Power
Series for Solving Ordinary Differential Equations. /TP 2024

e Formalizing and verifying program extraction using meta-level
programming and reasoning using e.g. MetaCoq
e Relating ours to classical formalizations e.g.
mathcomp-analysis (transfer principle, type-theoretic
generalization of the double-negation translation)
= Classical reasoning (of computational content) in cAERN can

27/27
be done relving on those rich libraries

% Thank you for your attention!

	Part I
	Part II : Dependent Type Theory
	Part III: Continuity of Continuity

	anm1:
	1.0:
	anm0:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

