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Overview

Real functions are continuous,
continuously, computationally

• Part I: Introduce exact real-number computation: What does
it mean to compute real numbers and functions?

• Part II: (1) Introduce a (constructive) dependent type theory
as a language of expressing and reasoning about “are"

(2) And present an axiomatic formalization of real numbers
and functions (whose interpretation corresponds to the exact
real-number computation, “computing real functions”)

• Part III: Prove that all real functions are continuously
continuous (in the type theory) and discuss possible
applications



Part I



Motivation: Correct Numerical Computations

• Computers model and make decisions for real-world problems
interacting with the physical world.

H WP article

• Correctness in safety-critical applications; e.g., Ariane 5 N
• Infinite data such as real numbers, functions, spaces

ubiquitously used to represent physical quantities such as
distances, temperature, trajectory, areas, etc

. Correctness in real number (and higher) computations
becomes more and more important! 2/27



Floating-Point Arithmetic

Common practice: Floating-point computation.

Inevitable round-off errors:
>>> x = (0.1 + 0.2) + 0.3

>>> y = 0.1 + (0.2 + 0.3)

>>> x == y

False

>>> x

0.6000000000000001

>>> y

0.6

due to fundamental limitation in expressivity of finite precision
• Discrepancy between intuitive semantics and actual machine

semantics makes it challenging to obtain correct programs
• When round-off errors accumulate (e.g. in an iterative

function system) computation can be totally meaningless
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Example - Logistic Map

xn+1 = 3.75 · xn · (1− xn) when x0 = 0.5
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Instead: Exact Real Computation

• Infinite representations for real numbers [Wei00]

E.g., rationals q1, q2, · · · expresses x ⇔ ∀i . |x − qi | ≤ 2−i

exact computations by type-2 machines
E.g., x + y is realized by (pi )i , (qi )i 7→ (pi+1 + qi+1)i

• Hide representation-specific details
 Abstract data type for exact real numbers:

>>> print(pi, 10) # print 2−10 approximation of π

3.14159± 2−10

>>> print(pi, 100)

3.14159265358979323846 · · · ± 2−100 # for high-precision result

>>> pi + sqrt(2) # evaluates exactly to π +
√

2
>>> print(pi + sqrt(2), p) # prints 2−p approx. to π +

√
2

• Expectation: intuitive reasoning with reals as in textbooks
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Computable and Uncomputable Primitives

• Infinite representations for real numbers [Wei00]

(q1, q2, . . .) ∈ QN expresses x ⇔ ∀i . |x − qi | ≤ 2−i

• The arithmetical operations (+,−,×,÷) are computable
(exactly without rounding errors.)

• However, computing x < y fails when x = y :
(pi )i∈N < (qi )i∈N =

for i = 0 → ∞:

if pi <Q qi − 2−n: return True

else if qi <Q pi − 2−n: return False

else: continue

More precisely, x < y diverges when x = y whichever
representation and whichever algorithm is used.

• Parallel evaluation is used:
x <ε y := (x < y + ε)||(y < x + ε)

to nondeterministically, but totally approximate x < y

x

y

ε

−ε

6/27



Verification in Exact Real Computation

• Programming with real numbers (as they were the familiar
abstract entities in the textbooks) carefully dealing with partial
comparisons and nondeterminism.

• In imperative paradigm: iRRAM (C++), Ariadne (C++ and
Python), Clerical, . . .

• In functional paradigm: AERN (Haskell), . . .

• Imperative programs: Verification reduces to the theory of
real numbers (with help of domain theory)

P et. al: Semantics, Specification Logic, and Hoare Logic of Exact Real
Computation (2024). Logical Methods in Computer Science

Andrej Bauer, P, Alex Simpson: An Imperative Language for Verified
Exact Real-Number Computation (2024). (submitted)

• Functional programs: From a (constructive) proof from
mathematical analysis, extract a correct program

Michal Konečný, P, Holger Thies: Extracting efficient exact real number
computation from proofs in constructive type theory (2024), Journal of
Logic and Computation 7/27



cAERN

• Introduces types for computational real numbers, partiality,
nondeterminism, . . . and primitive operations
in a constructive dependent type theory

• A constructive proofs get extracted to verified Exact Real
Computation user programs

E.g., Intermediate Value Theorem  Root-finding program

• A realizability interpretation as a metatheorem to prove
soundness of our axiomatization.

• Implementation as the Coq library cAERN
• https://github.com/holgerthies/coq-aern

• Approximately 12,000 lines of code.

• Program extraction to Haskell, using the AERN library for basic
operations on real numbers.
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Part II : Dependent Type Theory



Dependent Type Theory

• Base types: 0 (empty), 1 (unit), N (numbers) are types.
When A,B are types, A××× B (product), A+++ B (sum), A→ B

(mapping) are types.

Γ ` a : A
Γ ` inL a : A+++ B

Γ ` b : B
Γ ` inR b : A+++ B

• When B(x) is a type indexed by x : A

Π(x : A).B(x) (dependent function; the space of sections) and
Σ(x : A).B(x) (dependent pair; the total space) are types

Γ ` a :A Γ ` b :B[a/x ]

Γ ` 〈a, b〉 :Σ(x :A).B(x)

• Interpret types as propositions, A+++ B as A ∨ B ,
Π(x : A).B(x) as ∀x : A.B(x), and Σ(x : A).B(x) as
∃x : A.B(x)  language for constructive mathematics.
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Constructive Proofs are Programs

“Any natural number is either odd or even”

Define (n :N)-indexed families of types:

• isEven(n :N) := Σ(k : N). n = k + k

• isOdd(n :N) := Σ(k : N). n = k + k + 1

Then, the type below corresponds to the above statement:

Π(n : N). isOdd(n) +++ isEven(n)

The type is the space of sections:

f : N 3 n 7→

inL 〈k , ·〉 if n = 2k

inR 〈k, ·〉 if n = 2k + 1

a program that tells us whether n is even or odd and why.
10/27



Classical Types

Though, not all types are constructive:

• 0, 1, x = y do not carry any computational structure

• Define ¬A := A→ 0.

• A type A is a classical proposition if A ∼= ¬¬A.

Assume that there is a universe Prop of classical propositions that
is closed under ∃̃ and ∨̃.

Assume Π(P :Prop).P ∨̃ ¬P but not Π(P :Prop).P +++ ¬P .

Idea: put algorithms in the usual type-level,
and write verification-related specifications in Prop.

Further assume classical propositional extensionality, functional
extensionality, etc.
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Naïve Reals in Constructive Type Theory

• Constructive dependent type theory:

A+++ B is valid ∼= deciding A or B is computable

Σ(x : A). B(x) is valid ∼= finding x : A s.t. B(x) is computable

• Certified program extraction:

Π(x : A). Σ(y : B). R(x , y)

yields a program P : A→ B s.t. ∀(x : A). R(x ,P(x))

• Classical axiomatization of reals is invalid:

Trichotomy : Π(x : R). (x < 0) +++ (x = 0) +++ (x > 0)

The sign test of reals is not computable

• Axiomatization of exact reals s.t.
proofs ∼= programs in ERC framework (viz. AERN in Haskell)
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“Constructive” Axiomatic Reals and Partiality

Axiom 1: There is a type R.

Axiom 2: There are terms for (0, 1, . . . ,+,−,×,÷)

Axiom 3: Given x , y : R, we have

(x < y) : S

where S is another axiomatic type for partial computations

Axiom 4: ↓ :S is for termination and ↑ :S is for nontermination

• (x < y) =↓ (or write (x < y)↓) when x < y .
• (x < y) =↑ (or write (x < y)↑) when x ≥ y .

We can prove Π(x : R). (x < 0)↓ ∨̃ (x = 0) ∨̃ (x > 0)↓ : Prop

But cannot prove Π(x : R). (x < 0)↓+++ (x = 0)+++ (x > 0)↓ : Type
13/27



Axiomatic Nondeterminism

Axiom: there is a monad M : Type→ Type for nondeterminism

Π(s1, s2 :S). (s1 ↓ ∨̃ s2 ↓)→ M
(
s1 ↓+++ s2 ↓

)
Given two partial computations s1, s2, given classically that s1 or s2
terminates, we can nondeterministically decide which terminates.

Example: for any positive ε :R, we can prove

Π(x , y : R).M
(
(x < y + ε)↓+++(y < x + ε)↓

)
but cannot prove

Π(x , y : R). (x < y + ε)↓+++(y < x + ε)↓

Axiom: Subsingletons are deterministic

Π(A :Type).
(
Π(a, b :A). a = b

)
→ M A ∼= A

Example: we can prove Π(x , y). (x 6= y)→ (x < y)↓+++(y < x)↓ 14/27



Nondeterministic Dependent Choice

Axiom: For a nondeterministic procedure f : A→ M A, iterating it
on a :A, nondeterministically yields a deterministic section
h : N→ A of f ω : (n 7→ f n) : N→ M A that are precisely traces

Example: Consider f : x 7→ {x − 1, x + 1}

0

1

−1

2

0

−2

3

1

−1

−3

Naive iteration yields f ω(n) = {−n,−n + 2, . . . , n} whereas
traces are {h | h(0) = 0, h(n + 1) = h(n)± 1} 15/27



Nondeterministic Completeness

Example: Given the unique classical description of a real number
P : R→ Prop. Write x ≈n P for the classical proposition saying
x :R approximates P up to 2−n. Then we have:(

Π(n :N).MΣ(y :R). y ≈n P
)
→ Σ(x :R).P x

Proof Idea:
f : N→ MR converges to y :R

n

f (n)

• Each nondeterministic
section h : N→ R of f is a
Cauchy sequence

• M-lifting of lim on h yields
M R limits

• As there is at most one limit,
Subsingleton-elimination
yields the limit y
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Nice Example

Define isMax(z , x , y) :≡ (x ≥ y → z = x) ∧ (y ≥ x → z = y)

as a classical predicate and prove:

Π(x , y : R). Σ(z : R). isMax(z , x , y)

Proof.

• limit as n→∞:

• assume M
(
(x < y + 2−n) +++ (y < x + 2−n)

)
← axiom

• assume
(
(x < y + 2−n) +++ (y < x + 2−n)

)
• case 1: x < y + 2−n, y approximates the max by 2−n

• case 2: y < x + 2−n, x approximates the max by 2−n

• Σ(z : R). z approximates the max by 2−n

• MΣ(z : R). z approximates the max by 2−n ← M-lift

• Σ(z : R). isMax(z , x , y) ← nondeterministic completeness

extracts to the maximum function in AERN 17/27



Code Extraction Example

What really is M? How are the axioms justified? 18/27



Assemblies

• Assembly X = (|X |,
X ) is a pair of a set |X | and a binary
relation 
X⊆ NN × |X | that is surjective [Lon95]:

∀(x ∈ |X |). ∃(ϕ ∈ NN). ϕ 
X x

• f : |X | → |Y | is computable if there is a type-2 machine
τ :⊆ NN → NN that tracks f :

X Y

NN NN

f


X

τ


Y

∀(x ∈ |X |). ∀(ϕ ∈ NN). ϕ 
X x ⇒ τ(ϕ) 
Y f (x)

• Category of assemblies & computable functions Asm(NN)

forms a locally Cartesian closed category modeling Dependent
Type Theory [Bir95] 19/27



Validity of Some Axiomatization

• Standard Cauchy assembly |R| = R:
ϕ 
R x :⇐⇒ ϕ(n) encodes qn ∈ Q. |qn − x | < 2−n for all n

• Nondeterminism monad M : Asm(NN)→ Asm(NN)

|M X | :≡ {A ⊆ |X | | A 6= ∅} ϕ 
M X A :⇐⇒ ∃(x ∈ A). ϕ 
X x

• Sierpiński assembly |S| = {↑, ↓} :

ϕ 
S↑ :⇐⇒ ∀(i ∈ N). ϕ(i) = 0

ϕ 
S↓ :⇐⇒ ∃(i ∈ N). ϕ(i) 6= 0

• classifies opens/semi-decidable subsets:

f : R→ S ⇐⇒ f characterize a semi-decidable S ⊆ R

• The axiom saying x < y is semi-decidable is indeed valid.
• The set of axioms are valid and universal [Her99]
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Part III: Continuity of Continuity



Continuity Principles

• In Asm(NN), a mapping f : X → Y is by def. computable
and a function object Y X consists of continuously realizable
functions from X to Y

• (Hence) the statement
all real functions are continuous as stated by Brouwer

is a valid sentence in Asm(NN)

We can assume and use it for integration, derivation, etc

How about other abstract spaces X other than R?
• The common approach is to assume the statement:

all mappings NN → N are continuous

then study NN ↪→ X to expand it to X .
• Desired: abstract and at the same time general enough

continuity principle
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Continuity Principle

Axiom(Continuity): For any partial computation over sequences,

f : XN → S

and for any sequence x : XN, when f x terminates ((f x)↓) there
nondeterministically exists an index n : N that f cannot distinguish:

Π(n :N). x̄n = ȳn → (f y)↓

The axiom can be realized by:
function continuity (f :XN → S, x :XN):

var n :N := 0;

local function x_(m :N) =

n := max(n, m);

return xm

let _ := f(x_);

return n; 22/27



Continuous Continuity

Lemma: Any f : NN → S is continuously continuous;
i.e., there nondeterministically is µ : NN → N s.t.

1. µ is a modulus of continuity:

Π(x :NN). (f x)↓→ Π(y :NN). ȳµ x = x̄µ x → (f y)↓
For any sequence x , when f x terminates, it is okay to read only

µ x entries around x .

2. and µ is again continuous:

Π(x :NN). (f x)↓→ Σ(n :N).Π(y :NN). ȳn = x̄n → µ y = µ x

For any sequence x , when f x terminates, there nondeterministically

is a number of entries n where µ should give a consistent answer.

Proof Idea: prove continuity of h : NN → N by reducing it to a
Sierpinski-valued function. Then the result follows.
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Main Result

Lemma: Any real function f : R→ R is point-wise continuous:

Π(x :R, n :N).MΣ(µx,n :N).Π(y :R). |x − y | ≤ 2−µx,n → |f x − f y | ≤ 2−n

Moreover, it is continuously continuous on Q ↪→ R;
i.e., there nondeterministically is µ : Q× N→ N s.t.

1. µ is a modulus of continuity:

Π(q :Q, n :N).Π(y :R). |q − y | ≤ 2−µ(q,n) → |f q − f y | ≤ 2−n

2. and µ is again continuous:

Π(q :Q, n :N).Σ(m :N).Π(r :R). |q − r | ≤ 2−m → µ(q, n) = µ(r , n)

However, Q cannot be replaced with R. In this sense, any real
function f : R→ R is continuously continuous.
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Proof Idea

Prove it for f : R→ S:

R S

Q QN M QN

f

α

q 7→qω

δ

η

• Get continuous modulus of continuity µ for f ◦ δ : QN → S.
• For any x :R s.t. (f x)↓:
• get nondeterministically φ :QN such that δφ = x (by α)

• obtain n :N such that φ̄n = ψ̄n implies (f (ψ̂))↓ (by µ)

• claim this n works:
• For any y :R s.t. |x − y | ≤ 2−n:

there classically exists ψ :QN s.t. φ̄n = ψ̄n and δψ = y .
• Hence, ¬¬(f (δψ))↓ and indeed (f y)↓.

and the modulus is continuous on Q 25/27



So What?

• Continuity is used to make X → S indeed the space of opens.
• From opens, define various classes of hyperspaces: closed,

overt, compact, overt-compact, located, . . ..
• For overt-compactness, to cover an open X → S, it is required

the obtained continuity is continuous; when modulus is not
continuous, it can fail to cover a compact interval

• E.g., in our system, we can define fractals as the (Hausdorff-)
limit and extract certified drawings:

26/27



Conclusion

In this talk, the followings were presented:
• A constructive dependent type theory as a language of exact

real number computations (cAERN project)
• Recent formalization of continuity principle and hyperspace

computations

Future work includes:
• Other applications e.g., extending the ODE solving:

SP and Holger Thies: A Coq Formalization of Taylor Models and Power
Series for Solving Ordinary Differential Equations. ITP 2024

• Formalizing and verifying program extraction using meta-level
programming and reasoning using e.g. MetaCoq

• Relating ours to classical formalizations e.g.
mathcomp-analysis (transfer principle, type-theoretic
generalization of the double-negation translation)

⇒ Classical reasoning (of computational content) in cAERN can
be done relying on those rich libraries
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% Thank you for your attention!

27/27


	Part I
	Part II : Dependent Type Theory
	Part III: Continuity of Continuity

	anm1: 
	1.0: 
	anm0: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


