
Real functions are continuous,
continuously, computationally

Sewon Park (Kyoto University)

based on j.w.w.
Holger Thies (Kyoto U.) and Michal Konečný (Aston U.)

The Fourth Korea Logic Day 2025
January 13–15, 2025
Changwon, Korea

0/27

Overview

Real functions are continuous,
continuously, computationally

• Part I: Introduce exact real-number computation: What does
it mean to compute real numbers and functions?

• Part II: (1) Introduce a (constructive) dependent type theory
as a language of expressing and reasoning about “are"

(2) And present an axiomatic formalization of real numbers
and functions (whose interpretation corresponds to the exact
real-number computation, “computing real functions”)

• Part III: Prove that all real functions are continuously
continuous (in the type theory) and discuss possible
applications

Part I

Motivation: Correct Numerical Computations

• Computers model and make decisions for real-world problems
interacting with the physical world.

H WP article

• Correctness in safety-critical applications; e.g., Ariane 5 N
• Infinite data such as real numbers, functions, spaces

ubiquitously used to represent physical quantities such as
distances, temperature, trajectory, areas, etc

. Correctness in real number (and higher) computations
becomes more and more important! 2/27

Floating-Point Arithmetic

Common practice: Floating-point computation.

Inevitable round-off errors:
>>> x = (0.1 + 0.2) + 0.3

>>> y = 0.1 + (0.2 + 0.3)

>>> x == y

False

>>> x

0.6000000000000001

>>> y

0.6

due to fundamental limitation in expressivity of finite precision
• Discrepancy between intuitive semantics and actual machine

semantics makes it challenging to obtain correct programs
• When round-off errors accumulate (e.g. in an iterative

function system) computation can be totally meaningless

3/27

Example - Logistic Map

xn+1 = 3.75 · xn · (1− xn) when x0 = 0.5

4/27

Instead: Exact Real Computation

• Infinite representations for real numbers [Wei00]

E.g., rationals q1, q2, · · · expresses x ⇔ ∀i . |x − qi | ≤ 2−i

exact computations by type-2 machines
E.g., x + y is realized by (pi)i , (qi)i 7→ (pi+1 + qi+1)i

• Hide representation-specific details
 Abstract data type for exact real numbers:

>>> print(pi, 10) # print 2−10 approximation of π

3.14159± 2−10

>>> print(pi, 100)

3.14159265358979323846 · · · ± 2−100 # for high-precision result

>>> pi + sqrt(2) # evaluates exactly to π +
√

2
>>> print(pi + sqrt(2), p) # prints 2−p approx. to π +

√
2

• Expectation: intuitive reasoning with reals as in textbooks

5/27

Computable and Uncomputable Primitives

• Infinite representations for real numbers [Wei00]

(q1, q2, . . .) ∈ QN expresses x ⇔ ∀i . |x − qi | ≤ 2−i

• The arithmetical operations (+,−,×,÷) are computable
(exactly without rounding errors.)

• However, computing x < y fails when x = y :
(pi)i∈N < (qi)i∈N =

for i = 0 → ∞:

if pi <Q qi − 2−n: return True

else if qi <Q pi − 2−n: return False

else: continue

More precisely, x < y diverges when x = y whichever
representation and whichever algorithm is used.

• Parallel evaluation is used:
x <ε y := (x < y + ε)||(y < x + ε)

to nondeterministically, but totally approximate x < y

x

y

ε

−ε

6/27

Verification in Exact Real Computation

• Programming with real numbers (as they were the familiar
abstract entities in the textbooks) carefully dealing with partial
comparisons and nondeterminism.

• In imperative paradigm: iRRAM (C++), Ariadne (C++ and
Python), Clerical, . . .

• In functional paradigm: AERN (Haskell), . . .

• Imperative programs: Verification reduces to the theory of
real numbers (with help of domain theory)

P et. al: Semantics, Specification Logic, and Hoare Logic of Exact Real
Computation (2024). Logical Methods in Computer Science

Andrej Bauer, P, Alex Simpson: An Imperative Language for Verified
Exact Real-Number Computation (2024). (submitted)

• Functional programs: From a (constructive) proof from
mathematical analysis, extract a correct program

Michal Konečný, P, Holger Thies: Extracting efficient exact real number
computation from proofs in constructive type theory (2024), Journal of
Logic and Computation 7/27

cAERN

• Introduces types for computational real numbers, partiality,
nondeterminism, . . . and primitive operations
in a constructive dependent type theory

• A constructive proofs get extracted to verified Exact Real
Computation user programs

E.g., Intermediate Value Theorem Root-finding program

• A realizability interpretation as a metatheorem to prove
soundness of our axiomatization.

• Implementation as the Coq library cAERN
• https://github.com/holgerthies/coq-aern

• Approximately 12,000 lines of code.

• Program extraction to Haskell, using the AERN library for basic
operations on real numbers.

8/27

https://github.com/holgerthies/coq-aern

Part II : Dependent Type Theory

Dependent Type Theory

• Base types: 0 (empty), 1 (unit), N (numbers) are types.
When A,B are types, A××× B (product), A+++ B (sum), A→ B

(mapping) are types.

Γ ` a : A
Γ ` inL a : A+++ B

Γ ` b : B
Γ ` inR b : A+++ B

• When B(x) is a type indexed by x : A

Π(x : A).B(x) (dependent function; the space of sections) and
Σ(x : A).B(x) (dependent pair; the total space) are types

Γ ` a :A Γ ` b :B[a/x]

Γ ` 〈a, b〉 :Σ(x :A).B(x)

• Interpret types as propositions, A+++ B as A ∨ B ,
Π(x : A).B(x) as ∀x : A.B(x), and Σ(x : A).B(x) as
∃x : A.B(x) language for constructive mathematics.

9/27

Constructive Proofs are Programs

“Any natural number is either odd or even”

Define (n :N)-indexed families of types:

• isEven(n :N) := Σ(k : N). n = k + k

• isOdd(n :N) := Σ(k : N). n = k + k + 1

Then, the type below corresponds to the above statement:

Π(n : N). isOdd(n) +++ isEven(n)

The type is the space of sections:

f : N 3 n 7→

inL 〈k , ·〉 if n = 2k

inR 〈k, ·〉 if n = 2k + 1

a program that tells us whether n is even or odd and why.
10/27

Classical Types

Though, not all types are constructive:

• 0, 1, x = y do not carry any computational structure

• Define ¬A := A→ 0.

• A type A is a classical proposition if A ∼= ¬¬A.

Assume that there is a universe Prop of classical propositions that
is closed under ∃̃ and ∨̃.

Assume Π(P :Prop).P ∨̃ ¬P but not Π(P :Prop).P +++ ¬P .

Idea: put algorithms in the usual type-level,
and write verification-related specifications in Prop.

Further assume classical propositional extensionality, functional
extensionality, etc.

11/27

Naïve Reals in Constructive Type Theory

• Constructive dependent type theory:

A+++ B is valid ∼= deciding A or B is computable

Σ(x : A). B(x) is valid ∼= finding x : A s.t. B(x) is computable

• Certified program extraction:

Π(x : A). Σ(y : B). R(x , y)

yields a program P : A→ B s.t. ∀(x : A). R(x ,P(x))

• Classical axiomatization of reals is invalid:

Trichotomy : Π(x : R). (x < 0) +++ (x = 0) +++ (x > 0)

The sign test of reals is not computable

• Axiomatization of exact reals s.t.
proofs ∼= programs in ERC framework (viz. AERN in Haskell)

12/27

“Constructive” Axiomatic Reals and Partiality

Axiom 1: There is a type R.

Axiom 2: There are terms for (0, 1, . . . ,+,−,×,÷)

Axiom 3: Given x , y : R, we have

(x < y) : S

where S is another axiomatic type for partial computations

Axiom 4: ↓ :S is for termination and ↑ :S is for nontermination

• (x < y) =↓ (or write (x < y)↓) when x < y .
• (x < y) =↑ (or write (x < y)↑) when x ≥ y .

We can prove Π(x : R). (x < 0)↓ ∨̃ (x = 0) ∨̃ (x > 0)↓ : Prop

But cannot prove Π(x : R). (x < 0)↓+++ (x = 0)+++ (x > 0)↓ : Type
13/27

Axiomatic Nondeterminism

Axiom: there is a monad M : Type→ Type for nondeterminism

Π(s1, s2 :S). (s1 ↓ ∨̃ s2 ↓)→ M
(
s1 ↓+++ s2 ↓

)
Given two partial computations s1, s2, given classically that s1 or s2
terminates, we can nondeterministically decide which terminates.

Example: for any positive ε :R, we can prove

Π(x , y : R).M
(
(x < y + ε)↓+++(y < x + ε)↓

)
but cannot prove

Π(x , y : R). (x < y + ε)↓+++(y < x + ε)↓

Axiom: Subsingletons are deterministic

Π(A :Type).
(
Π(a, b :A). a = b

)
→ M A ∼= A

Example: we can prove Π(x , y). (x 6= y)→ (x < y)↓+++(y < x)↓ 14/27

Nondeterministic Dependent Choice

Axiom: For a nondeterministic procedure f : A→ M A, iterating it
on a :A, nondeterministically yields a deterministic section
h : N→ A of f ω : (n 7→ f n) : N→ M A that are precisely traces

Example: Consider f : x 7→ {x − 1, x + 1}

0

1

−1

2

0

−2

3

1

−1

−3

Naive iteration yields f ω(n) = {−n,−n + 2, . . . , n} whereas
traces are {h | h(0) = 0, h(n + 1) = h(n)± 1} 15/27

Nondeterministic Completeness

Example: Given the unique classical description of a real number
P : R→ Prop. Write x ≈n P for the classical proposition saying
x :R approximates P up to 2−n. Then we have:(

Π(n :N).MΣ(y :R). y ≈n P
)
→ Σ(x :R).P x

Proof Idea:
f : N→ MR converges to y :R

n

f (n)

• Each nondeterministic
section h : N→ R of f is a
Cauchy sequence

• M-lifting of lim on h yields
M R limits

• As there is at most one limit,
Subsingleton-elimination
yields the limit y

16/27

Nice Example

Define isMax(z , x , y) :≡ (x ≥ y → z = x) ∧ (y ≥ x → z = y)

as a classical predicate and prove:

Π(x , y : R). Σ(z : R). isMax(z , x , y)

Proof.

• limit as n→∞:

• assume M
(
(x < y + 2−n) +++ (y < x + 2−n)

)
← axiom

• assume
(
(x < y + 2−n) +++ (y < x + 2−n)

)
• case 1: x < y + 2−n, y approximates the max by 2−n

• case 2: y < x + 2−n, x approximates the max by 2−n

• Σ(z : R). z approximates the max by 2−n

• MΣ(z : R). z approximates the max by 2−n ← M-lift

• Σ(z : R). isMax(z , x , y) ← nondeterministic completeness

extracts to the maximum function in AERN 17/27

Code Extraction Example

What really is M? How are the axioms justified? 18/27

Assemblies

• Assembly X = (|X |,X) is a pair of a set |X | and a binary
relation X⊆ NN × |X | that is surjective [Lon95]:

∀(x ∈ |X |). ∃(ϕ ∈ NN). ϕ X x

• f : |X | → |Y | is computable if there is a type-2 machine
τ :⊆ NN → NN that tracks f :

X Y

NN NN

f

X

τ

Y

∀(x ∈ |X |). ∀(ϕ ∈ NN). ϕ X x ⇒ τ(ϕ) Y f (x)

• Category of assemblies & computable functions Asm(NN)

forms a locally Cartesian closed category modeling Dependent
Type Theory [Bir95] 19/27

Validity of Some Axiomatization

• Standard Cauchy assembly |R| = R:
ϕ R x :⇐⇒ ϕ(n) encodes qn ∈ Q. |qn − x | < 2−n for all n

• Nondeterminism monad M : Asm(NN)→ Asm(NN)

|M X | :≡ {A ⊆ |X | | A 6= ∅} ϕ M X A :⇐⇒ ∃(x ∈ A). ϕ X x

• Sierpiński assembly |S| = {↑, ↓} :

ϕ S↑ :⇐⇒ ∀(i ∈ N). ϕ(i) = 0

ϕ S↓ :⇐⇒ ∃(i ∈ N). ϕ(i) 6= 0

• classifies opens/semi-decidable subsets:

f : R→ S ⇐⇒ f characterize a semi-decidable S ⊆ R

• The axiom saying x < y is semi-decidable is indeed valid.
• The set of axioms are valid and universal [Her99]

20/27

Part III: Continuity of Continuity

Continuity Principles

• In Asm(NN), a mapping f : X → Y is by def. computable
and a function object Y X consists of continuously realizable
functions from X to Y

• (Hence) the statement
all real functions are continuous as stated by Brouwer

is a valid sentence in Asm(NN)

We can assume and use it for integration, derivation, etc

How about other abstract spaces X other than R?
• The common approach is to assume the statement:

all mappings NN → N are continuous

then study NN ↪→ X to expand it to X .
• Desired: abstract and at the same time general enough

continuity principle
21/27

Continuity Principle

Axiom(Continuity): For any partial computation over sequences,

f : XN → S

and for any sequence x : XN, when f x terminates ((f x)↓) there
nondeterministically exists an index n : N that f cannot distinguish:

Π(n :N). x̄n = ȳn → (f y)↓

The axiom can be realized by:
function continuity (f :XN → S, x :XN):

var n :N := 0;

local function x_(m :N) =

n := max(n, m);

return xm

let _ := f(x_);

return n; 22/27

Continuous Continuity

Lemma: Any f : NN → S is continuously continuous;
i.e., there nondeterministically is µ : NN → N s.t.

1. µ is a modulus of continuity:

Π(x :NN). (f x)↓→ Π(y :NN). ȳµ x = x̄µ x → (f y)↓
For any sequence x , when f x terminates, it is okay to read only

µ x entries around x .

2. and µ is again continuous:

Π(x :NN). (f x)↓→ Σ(n :N).Π(y :NN). ȳn = x̄n → µ y = µ x

For any sequence x , when f x terminates, there nondeterministically

is a number of entries n where µ should give a consistent answer.

Proof Idea: prove continuity of h : NN → N by reducing it to a
Sierpinski-valued function. Then the result follows.

23/27

Main Result

Lemma: Any real function f : R→ R is point-wise continuous:

Π(x :R, n :N).MΣ(µx,n :N).Π(y :R). |x − y | ≤ 2−µx,n → |f x − f y | ≤ 2−n

Moreover, it is continuously continuous on Q ↪→ R;
i.e., there nondeterministically is µ : Q× N→ N s.t.

1. µ is a modulus of continuity:

Π(q :Q, n :N).Π(y :R). |q − y | ≤ 2−µ(q,n) → |f q − f y | ≤ 2−n

2. and µ is again continuous:

Π(q :Q, n :N).Σ(m :N).Π(r :R). |q − r | ≤ 2−m → µ(q, n) = µ(r , n)

However, Q cannot be replaced with R. In this sense, any real
function f : R→ R is continuously continuous.

24/27

Proof Idea

Prove it for f : R→ S:

R S

Q QN M QN

f

α

q 7→qω

δ

η

• Get continuous modulus of continuity µ for f ◦ δ : QN → S.
• For any x :R s.t. (f x)↓:
• get nondeterministically φ :QN such that δφ = x (by α)

• obtain n :N such that φ̄n = ψ̄n implies (f (ψ̂))↓ (by µ)

• claim this n works:
• For any y :R s.t. |x − y | ≤ 2−n:

there classically exists ψ :QN s.t. φ̄n = ψ̄n and δψ = y .
• Hence, ¬¬(f (δψ))↓ and indeed (f y)↓.

and the modulus is continuous on Q 25/27

So What?

• Continuity is used to make X → S indeed the space of opens.
• From opens, define various classes of hyperspaces: closed,

overt, compact, overt-compact, located,
• For overt-compactness, to cover an open X → S, it is required

the obtained continuity is continuous; when modulus is not
continuous, it can fail to cover a compact interval

• E.g., in our system, we can define fractals as the (Hausdorff-)
limit and extract certified drawings:

26/27

Conclusion

In this talk, the followings were presented:
• A constructive dependent type theory as a language of exact

real number computations (cAERN project)
• Recent formalization of continuity principle and hyperspace

computations

Future work includes:
• Other applications e.g., extending the ODE solving:

SP and Holger Thies: A Coq Formalization of Taylor Models and Power
Series for Solving Ordinary Differential Equations. ITP 2024

• Formalizing and verifying program extraction using meta-level
programming and reasoning using e.g. MetaCoq

• Relating ours to classical formalizations e.g.
mathcomp-analysis (transfer principle, type-theoretic
generalization of the double-negation translation)

⇒ Classical reasoning (of computational content) in cAERN can
be done relying on those rich libraries

27/27

% Thank you for your attention!

27/27

	Part I
	Part II : Dependent Type Theory
	Part III: Continuity of Continuity

	anm1:
	1.0:
	anm0:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

