\leftarrow \Box \rightarrow \leftarrow $\overline{\Box}$ \rightarrow \rightarrow \leftarrow $\overline{\Box}$

 Ω

On proof-theoretic dilator and Pohlers' characteristic ordinals

Hanul Jeon

Cornell University

2025-01-15

The 4th Korea Logic Day

Hanul Jeon Cornell University Cornell University Cornell University Cornell University Cornell University

K ロ ▶ K 御 ▶ K 舌

Table of Contents

1 [Introduction](#page-2-0)

2 [Pohlers' Characteristic ordinals](#page-12-0)

3 [Dilators](#page-20-0)

4 [The connection](#page-30-0)

Hanul Jeon Cornell University

 Ω

← ロ ▶ → イ 何 ▶

 Ω

Strength of theories

Gödel's incompleteness theorem shows no recursive theory interpreting arithmetic can prove its own consistency unless it is inconsistent.

Problem: How do we 'line up' theories into a hierarchy?

 \leftarrow \Box \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\rightarrow}$

 Ω

How to compare the strength of theories?

The most simple way to compare theories is inclusion. (Which theory proves more?)

Example

Clearly ZFC \subset ZFC $+ \neg$ CH However, a forcing argument shows if ZFC is consistent, then so is $ZFC + \neg CH$.

Hence both ZFC and ZFC $+ \neg CH$ have the same "consistency strength."

K ロ ▶ K 何 ▶ K 手

 Ω

Consistency strength

What happens if we compare theories by their "consistency strength?"

Definition

For two theories S and T extending PRA, define

$$
S \leq_{Con} T \iff \text{PRA} \vdash (\text{Con}(T) \to \text{Con}(S))
$$

and

$$
S <_{Con} T \iff T \vdash Con(S).
$$

Hanul Jeon Cornell University Cornell University Cornell University Cornell University Cornell University

[Introduction](#page-2-0) [Pohlers' Characteristic ordinals](#page-12-0) [Dilators](#page-20-0) [The connection](#page-30-0) [Q&A](#page-43-0)

 \leftarrow \Box \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\rightarrow}$

 Ω

 \leq_{Con} is ill-behaved

Various logicians (Koellner, Simpson, Steel, ...) pointed out that \leq_{Con} for natural theories is a prewellorder. However,

Theorem (Folklore)

There are theories T_0 and T_1 such that neither $T_0 \leq_{C_{0n}} T_1$ nor $T_1 \leq C_{\text{on}} T_0$. Also, there are theories $\langle T_n | n \langle \omega \rangle$ such that

$$
\mathcal{T}_0 >_{Con} \mathcal{T}_1 >_{Con} \mathcal{T}_2 >_{Con} \cdots.
$$

Hanul Jeon Cornell University

 \leftarrow \Box \rightarrow \rightarrow \leftarrow \Box \rightarrow \rightarrow \Box \rightarrow

 Ω

What is wrong?

There are various ways to explain the gap between the facts and the phenomena.

One way is: \leq_{Con} is too 'finer' than what logicians actually use.

Example

When set theorists prove $S \vdash Con(T)$, they prove 'S proves T has a transitive model' that is stronger than $S \vdash Con(T)$.

 \leftarrow \Box \rightarrow \rightarrow \leftarrow \Box \rightarrow \rightarrow \Box \rightarrow

 Ω

Proof-theoretic ordinal

Proof-theoretic ordinal gives a linear way to compare theories. Brief history:

 \Box (Gentzen 1934) If

$$
\varepsilon_0 = \sup\{\omega, \omega^\omega, \omega^{\omega^\omega}, \cdots\}
$$

is well-founded, then PA is consistent.

- **2** (Takeuti 1967) Ordinal analysis of Π_1^1 -CA₀.
- 3 (Arai, Rathjen independently, 1994-1995) Ordinal analysis of Π_2^1 -CA₀.
- 4 (Arai, Pakhomov, Towsner 2024?) Ordinal analysis of the full second-order arithmetic.

Definition

For a theory T, let us define the proof-theoretic ordinal of T by

 $|\mathcal{T}|_{\mathsf{\Pi}_{1}^{1}}=$ sup $\{\mathsf{otp}(\alpha):\alpha$ is a recursive linear order

such that $T \vdash WO(\alpha)$.

メロメ メ御 メメ きょ メ ヨメ

It does not precisely gauge the consistency strength of a theory, e.g., $|T|_{\Pi_1^1} = |T + \text{Con}(T)|_{\Pi_1^1}$.

Hanul Jeon Cornell University

 209

What does Proof-theoretic ordinal gauge?

The following theorem hints what proof-theoretic ordinal gauges:

Theorem (Kleene, $\overline{ACA_0}$)

For every Π^1_1 -formula* $\phi(X)$ with all free variables displayed, we can uniformly find a recursive linear order $\alpha(X)$ such that

 $\phi(X) \leftrightarrow WO(\alpha(X)).$

i.e., 'Well-foundedness of a recursive linear order' $= \Pi^1_1.$

*A formula of the form "For every real X, (a bo[und](#page-9-0)[ed](#page-11-0) [f](#page-11-0)[orm](#page-10-0)[ul](#page-1-0)[a](#page-2-0) f[or](#page-12-0) \mathcal{X} \mathcal{X} \mathcal{X} [\)](#page-11-0)["](#page-12-0) Ω

Hanul Jeon Cornell University Cornell University Cornell University Cornell University Cornell University

メロメ メタメメ ミメメ 毛

 Ω

Let us define:

$$
\mathbf{1} \quad \mathcal{T} \vdash^{\Sigma_1^1} \phi \text{ iff } \mathcal{T} + \sigma \vdash \phi \text{ for some true } \Sigma_1^1\text{-sentence } \sigma.
$$

$$
\mathbf{2} \ \mathsf{S} \subseteq_{\Pi^1_1}^{\Sigma^1_1} \mathsf{T} \text{ iff } \mathsf{S} \vdash^{\Sigma^1_1} \phi \implies \mathsf{T} \vdash^{\Sigma^1_1} \phi \text{ for every } \Pi^1_1 \text{-sentence } \phi.
$$

Theorem (Walsh 2023)

For Π^1_1 -sound theories S, T extending ACA₀,

$$
|S|_{\Pi_1^1} \leq |T|_{\Pi_1^1} \iff S \subseteq_{\Pi_1^1}^{\Sigma_1^1} T.
$$

That is, comparing proof-theoretic ordinal is equivalent to comparing Π^1_1 -consequences of a theory modulo true Σ^1_1 -sentences.

Hanul Jeon Cornell University

K ロ ▶ K 何 ▶

Generalizing Proof-theoretic ordinal

Proof-theoretic ordinal gives a linear scale for theories, but its calculation is extremely hard for 'impredicative' theories. In some sense, Proof-theoretic ordinal as a 'scale' is too 'fine' for impredicative theories.

 Ω

Observation

For a Π^1_1 -sound r.e. theory T extending ACA₀,

 $|\mathcal{T}|_{\mathsf{\Pi}_{1}^{1}}=\mathsf{sup}\{\mathsf{otp}(\alpha):\alpha\mathsf{~is~an~arithmetically~definable~}$ linear order such that $T \vdash WO(\alpha)$.

Hanul Jeon Cornell University Cornell University Cornell University Cornell University Cornell University

 209

メロメ メタメメ ミメメ 毛

 Ω

Pohlers' δ

We may use T-provably well-founded linear orders over an expansion of $\mathbb N$ to gauge the 'performance' of T.

Definition

Let $\mathfrak{M} = (\mathbb{N}; \dots)$ be an expansion of the structure of natural numbers. Suppose that $\mathcal T$ is an acceptable † axiomatization of $\mathfrak M$. Define

 $\delta^{\mathfrak{M}}(\mathcal{T})=\mathsf{sup}\{\mathsf{otp}(\alpha):\alpha\text{ is an }\mathfrak{M}\text{-definable linear order}\}$ such that $T \vdash WO(\alpha)$.

 $[†]T$ is sound and proves every true atomic sentence and first-order induction</sup> scheme over M. $\mathcal{A} \subseteq \mathcal{F} \times \mathcal{A} \longrightarrow \mathcal{A} \xrightarrow{\mathcal{B}} \mathcal{F} \times \mathcal{A} \xrightarrow{\mathcal{B}} \mathcal{F}$

Hanul Jeon Cornell University

 QQ

Spector class

Pohlers focused on the following collection for the expansions:

Definition

A collection Γ of subsets of N is a Spector class if it satisfies the following:

- \blacksquare Every atomic predicate and function over \mathfrak{M} , and their complements are in Γ. (For functions, consider their graph instead.)
- **2** Γ contains coding scheme for tuples over \mathfrak{M} .
- 3 「is closed under \cap , \cup , \exists^{0} , \forall^{0} , and trivial combinatorial substitutions.‡

‡Trivial combinatorial substitution is a map that is a composition of projection maps and the tuple map. メロメ メタメメ ミメメ 毛

Hanul Jeon Cornell University

 \leftarrow \Box \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\rightarrow}$

 Ω

Definition (continued)

- **4** Γ has a universal set; That is, for each $n \in \mathbb{N}$ there is an $(n + 1)$ -ary relation $U \in \Gamma$ such that every *n*-ary $R \in \Gamma$ is a section of U.
- **5** Γ has the prewellordering property; That is, for every $P \in \Gamma$ there is a norm σ_P : $P \rightarrow$ Ord such that the relations $1\!\!1$ $\vec{m}\leq^*_P\vec{n} \iff P(\vec{m})\wedge[P(\vec{n})\rightarrow(\sigma(\vec{m})\leq\sigma(\vec{n}))]$, and $2\mid \vec{m}<^*_P \vec{n} \iff P(\vec{m})\wedge[P(\vec{n})\rightarrow(\sigma(\vec{m})<\sigma(\vec{n}))]$ are both in Γ.

The structures Pohlers considered take the form $(N; A)_{A \in \Gamma}$ for a Spector class Γ.

メロメ メタメメ ミメメ 毛

 Ω

Example

 Π_1^1 sets and Σ_2^1 sets form Spector classes.

Example

An operator $\mathcal{A} \colon \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is monotone if $X \subseteq Y \rightarrow \mathcal{A}(X) \subseteq \mathcal{A}(Y)$. A least fixed point of F is the ⊂-least set X such that $A(X) \subseteq X$.

We can construct a least fixed point for a monotone A as follows:

$$
\mathcal{A}^0=\varnothing,\ \mathcal{A}^\xi=\bigcup_{\eta<\xi}\mathcal{A}(\mathcal{A}^\eta)
$$

and $\mathcal{A}^* = \bigcup_{\xi < \omega_1} \mathcal{A}^\xi.$ The set of least fixed points of an arithmetical operator forms a Spector class, and it is equal to $\Pi^1_1.$

Hanul Jeon Cornell University, and the cornell University of the cornell University, and the cornell University,

メロメ メ御 メメ ヨメ メヨメ

 209

Iterated Spector class

For a collection $\Gamma \subseteq \mathcal{P}(\mathbb{N})$ we can find the the next Spector class

 $SP(\Gamma) = \bigcap \{\Gamma' \supseteq \Gamma \mid \Gamma' \text{ is a Spector class}\}.$

Definition

For ξ less than the least recursively inaccessible ordinal, define **1** $SP^0_{\mathbb{N}} = \varnothing$. $\mathtt{2}$ SP $_{\mathbb{N}}^{\xi+1}$ is the next Spector class over SP $_{\mathbb{N}}^{\xi}.$ 3 SP $_{\mathbb{N}}^{\delta}=\bigcup_{\xi<\delta} \mathsf{SP}_{\mathbb{N}}^{\xi}$ if δ is limit.

 $\mathsf{SP}_{\mathbb{N}}^{\delta}$ is not a $\mathsf{Spector}$ class when δ is a limit.

Hanul Jeon Cornell University

メロメ メ御 メメ ヨメ メヨメ

 209

Example (Pohlers)

For $\xi \geq 1$ less than the least recursively inaccessible ordinal, we have $\mathsf{SP}_\mathbb{N}^\xi$

$$
\delta^{\mathsf{SP}^\varsigma_{\mathbb{N}}}(\mathsf{ACA}_0 + \mathsf{Th}(\mathbb{N};X)_{X \in \mathsf{SP}^\xi_{\mathbb{N}}}) = \varepsilon_{\omega_\xi^{\mathsf{CK}}+1}
$$

Here ω_ξ^CK is the ξ th admissible (or a limit of admissible) ordinal.

Hanul Jeon Cornell University

K ロ ▶ K 何 ▶

 \leftarrow \equiv

Why a dilator?

- Ordinal analysis \implies Analyses Π^1_1 -consequences of a theory.
- For a complicated theory, Π_n^1 -consequences for $n\geq 2$ affect Π^1_1 -consequences.

 Ω

 4 D \rightarrow 4 \overline{m} \rightarrow 4 \equiv

 Ω

Why a dilator?

- Ordinal analysis \implies Analyses Π^1_1 -consequences of a theory.
- For a complicated theory, Π_n^1 -consequences for $n\geq 2$ affect Π^1_1 -consequences.
- A dilator is the right concept for Π^1_2 -consequences.
- Girard's Π^1_2 -proof theory \implies Analyses Π^1_2 -consequences of a theory

[Introduction](#page-2-0) [Pohlers' Characteristic ordinals](#page-12-0) [Dilators](#page-20-0) [The connection](#page-30-0) [Q&A](#page-43-0)

 \leftarrow \Box \rightarrow \leftarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\rightarrow}$ \rightarrow \rightarrow

 Ω

An example: Class ordinals

Example

There is no transitive class isomorphic with $Ord + Ord$, but there is a way to represent it.

Let X be the class of pairs of the form $(0,\xi)$ or $(1,\xi)$ for an ordinal ξ , and impose an order over X as follows:

$$
(i, \eta) < (i, \xi) \text{ iff } \eta < \xi.
$$

 $(0, \eta) < (1, \xi)$ always holds.

Observation: The above construction is 'uniform.'

- Let F be a map sending α to the expression for $\alpha + \alpha$. Then
	- \blacksquare We can extend F to a functor from the category of linear orders to the same category.
	- 2 F preserves direct limits and pullbacks.
	- 3 If α is a well-order, then so is $F(\alpha)$.

 Ω

 4 D \rightarrow 4 \overline{m} \rightarrow 4 \equiv

Let F be a map sending α to the expression for $\alpha + \alpha$. Then

- \blacksquare We can extend F to a functor from the category of linear orders to the same category.
- 2 F preserves direct limits and pullbacks.
- 3 If α is a well-order, then so is $F(\alpha)$.

Definition

A semidilator is a functor from the category of linear orders LO to LO preserving direct limits and pullbacks. A semidilator F is a dilator if $F(\alpha)$ is a well-order when α is.

 \leftarrow \Box \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\rightarrow}$

 Ω

Hanul Jeon Cornell University Cornell University Cornell University Cornell University Cornell University

Dilators look too 'large,' but it turns out that we can recover a dilator from its small part:

Lemma

Every semidilator is determined by its restriction to the category Nat of finite ordinals.

 Ω

 4 O \rightarrow 4 \overline{m} \rightarrow 4 \overline{m} \rightarrow

イロト イ押ト イヨト イヨ

 Ω

Dilators look too 'large,' but it turns out that we can recover a dilator from its small part:

Lemma

Every semidilator is determined by its restriction to the category Nat of finite ordinals.

Definition

A semidilator D is countable if $D(n)$ is countable for each $n \in \mathbb{N}$ (if viewed as objects of the category of finite ordinals.) A countable semidilator D is A-recursive if we can code the restriction D to Nat into an A-recursive set.

 \leftarrow \Box \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\rightarrow}$

 Ω

The higher Kleene normal form theorem

Dilators represent Π_2^1 -sentences like ordinals represent Π_1^1 -sentences.

Theorem (Girard, ACA_0)

For every Π^1_2 -formula $\phi(X)$ with all free variables displayed, we can uniformly find a recursive semidilator D_x such that

 $\phi(X) \iff D_X$ is a dilator.

Hanul Jeon Cornell University, and the cornell University of the cornell University, and the cornell University,

メロメメ 御 メメ 重 メメ 重 メ

 Ω

Proof-theoretic dilator

Definition

For a theory T , define

 $|\mathcal{T}|_{\Pi^1_2}=\sum\{D \mid D$ is a recursive semidilator such that $T \vdash D$ is a dilator}.

 $|{\cal T}|_{\Pi^1_2}$ is unique up to bi-embeddability.

Example (Aguilera-Pakhomov)

 $|\mathsf{ACA}_0|_{\mathsf{\Pi^1_2}}=\varepsilon^+$, where ε^+ is a dilator such that $\varepsilon^+(\alpha)$ is the $\overline{}$ epsilon number greater than α .

Hanul Jeon Cornell University Cornell University Cornell University Cornell University Cornell University

 \leftarrow \Box \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\rightarrow}$

 Ω

Proof-theoretic dilator and Proof-theoretic ordinal

Theorem (Pakhomov-Walsh, Aguilera-Pakhomov)

Let T be a Π^1_2 -sound r.e. theory and α a recursive well-order. Then

$$
|\,\mathcal{T}\,|_{\Pi^1_2}(\alpha)=|\,\mathcal{T}+\mathsf{WO}(\alpha)|_{\Pi^1_1}.
$$

Question

What is the proof-theoretic meaning of $|T|_{\Pi_2^1}(\alpha)$ for a non-recursive α ?

Hanul Jeon Cornell University, and the cornell University of the cornell University, and the cornell University,

メロメ メ御 メメ ヨメ メヨメ

 Ω

A comparison

Example (Pohlers)

For $\xi \geq 1$ less than the least recursively inaccessible ordinal, we have

$$
\delta^{\sf SP_{\Bbb N}^{\xi}}({\sf ACA}_0+{\sf Th}(\Bbb N;{\sf SP}_{\Bbb N}^{\xi}))=\varepsilon_{\omega_{\xi}^{{\sf CK}}+1}=\varepsilon^+(\omega_{\xi}^{{\sf CK}}).
$$

Example (Aguilera-Pakhomov)

 $|\mathsf{ACA}_0|_{\mathsf{\Pi^1_2}}=\varepsilon^+$, where ε^+ is a dilator such that $\varepsilon^+(\alpha)$ is the epsilon number greater than α .

Hanul Jeon Cornell University

 Ω

Simplifying Pohlers' framework

 $\mathsf{SP}_\mathbb{N}^\xi$ has infinitely many sets, so cumbersome to handle. We want to find a single set H_{ξ} so that $(\mathbb{N},X)_{X\in \mathsf{SP}^{\xi}_{\mathbb{N}}}$ and (\mathbb{N},H_{ξ}) define the same sets.

Definition

For a real X , the hyperjump of X is the following set

$$
HJ(X) = \{ \ulcorner \phi \urcorner \mid \vDash_{\Pi_1^1} \phi(X) \text{ with all second-order}
$$

free variables of ϕ displayed }.

メロメ メタメメ ミメメ 毛

where $\vDash_{\Pi^1_1}$ is a partial truth predicate for Π^1_1 -formulas.

メロメ メタメ メミメメ

We can see that $\mathsf{SP}^1_{\mathbb{N}}=\mathsf{\Pi}^1_1.$ $\mathsf{SP}^2_{\mathbb{N}}=\mathsf{\Pi}^1_1[\mathsf{HJ}(\emptyset)]$, etc. In general, we have

Theorem

For ξ less than the least recursively inaccessible ordinal, we have $\mathsf{SP}_{\mathbb{N}}^{\xi+1} = \mathsf{\Pi}^1_1[\mathsf{H}\mathsf{J}^{\xi}(\emptyset)].$

Hanul Jeon Cornell University

 Ω

メロメ メ御 メメ ヨメ メヨメ

 Ω

$HJ(\emptyset)$ is 'definable' in the following sense:

Definition

A real R is a $\underline{\Sigma^1_2}$ -singleton if there is a Σ^1_2 -formula $\phi(X)$ such that

$$
\phi(R) \wedge \forall X, Y[\phi(X) \wedge \phi(Y) \rightarrow X = Y].
$$

HJ^ξ(Ø) is also a Σ^1_2 -singleton for ξ less than the least recursively inaccessible ordinal.

Hanul Jeon Cornell University

K ロ ▶ K 何 ▶

 Ω

Genedendron

So far, we reduced iterated Spector classes to appropriate Σ^1_2 -singletons. We want to introduce a recursive object 'generating' \S a Σ^1_2 -singleton.

Hanul Jeon Cornell University

 § passively or non-deterministically searching?

 \leftarrow \Box \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\rightarrow}$

 Ω

Definition

- A genedendron is a pair (D, ρ) such that
	- 1 D 'generates' a functorial family $\langle D_{\alpha} | \alpha \in \text{Ord} \rangle$ of trees.
	- 2 ρ generates a functorial family $\langle \varrho_{\alpha} | \alpha \in \text{Ord} \rangle$, and ϱ_{α} is a function taking an infinite branch of D_{α} and returning a real.
	- 3 ρ_{α} is a constant function if defined.

We think of D_{α} a tree and each of the set of immediate successors is linearly ordered. If every set of immediate successors of D_{α} is well-ordered, we say (D, ρ) is locally well-founded.

[Introduction](#page-2-0) [Pohlers' Characteristic ordinals](#page-12-0) [Dilators](#page-20-0) [The connection](#page-30-0) [Q&A](#page-43-0)

 $d \leq \beta$

K ロ ⊁ K 伊 ⊁ K 毛

×

∍ Hanul Jeon Cornell University

 299

メロトメ 倒 トメ ミトメ ミト

 209

By functoriality, a genedendron is completely determined by $(D_{\omega}, \rho_{\omega}).$

Definition

A genedendron (D, ϱ) is recursive if there is a recursive set coding $(D_{\omega}, \varrho_{\omega}).$

Example (J.)

We can find a recursive well-founded genedendron (D, ϱ) generating ${\sf H J}(\emptyset)$ such that $D(\alpha)$ is ill-founded iff $\alpha \ge \omega_{1}^{\sf CK}.$

Hanul Jeon Cornell University

[Introduction](#page-2-0) [Pohlers' Characteristic ordinals](#page-12-0) [Dilators](#page-20-0) [The connection](#page-30-0) [Q&A](#page-43-0)

 \leftarrow \Box \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\rightarrow}$

 Ω

Π^1_1 $\frac{1}{1}[R]$ Proof-theoretic ordinal

Definition

Let R be a Σ^1_2 -singleton. For a sound theory T proving 'R uniquely exists,' let us define the $\Pi^1_1[R]$ Proof-theoretic ordinal of T by

$$
|T|_{\Pi_1^1[R]} = \sup \{ \text{otp}(\alpha) : \alpha \text{ is an } R\text{-recursive linear order} \}
$$

such that $T \vdash \text{WO}(\alpha) \}.$

More precisely, we use the Σ^1_2 -singleton definition of R in place of R to formulate the definition.

Hanul Jeon Cornell University

K ロ ▶ K 何 ▶

Pohlers' Characteristic ordinal and $\Pi^1_1[R]$ PTO

Lemma

Let $\xi \geq 1$ be a successor ordinal less than the least recursively inaccessible ordinal. If τ is an acceptable axiomatization of $\mathsf{SP}^\xi_\mathbb{N}$, then we have

$$
\delta^{\mathsf{SP}^{\xi}_{\mathbb{N}}}(T)=|\mathcal{T}|_{\mathsf{\Pi}^1_1[\mathsf{HJ}^{\xi}(\emptyset)]}.
$$

Hanul Jeon Cornell University

 Ω

 \leftarrow \Box \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\rightarrow}$

 Ω

The main theorem

Theorem (J.)

Let T be a Π^1_2 -sound theory extending ACA₀ and (D, ϱ) be a recursive locally well-founded genedendron generating R. If T proves (D, ρ) is a locally well-founded genedendron, and α is an R-recursive well-order such that D_{α} is ill-founded, then

 $|{\cal T}|_{\Pi^1_2}(\alpha) = |{\cal T}[R] + {\sf WO}(\alpha)|_{\Pi^1_1[R]}.$

Here $T[R]$ is the theory $T + 'R$ exists.'

Hanul Jeon Cornell University

K ロ ▶ K 何 ▶

4 重

 Ω

As an instance of the theorem, we can see

$$
|\mathsf{ACA}_0+'\mathsf{HJ}(\emptyset) \text{ exists'}|_{\Pi^1_1[\mathsf{HJ}(\emptyset)]} = |\mathsf{ACA}_0|_{\Pi^1_2}(\omega_1^{\mathsf{CK}}) = \varepsilon_{\omega_1^{\mathsf{CK}}+1}.
$$

Hence we can reproduce Pohlers' result from the proof-theoretic dilator of ACA_0 and appropriate genedendrons.

 4 D \rightarrow 4 \overline{m} \rightarrow 4 \equiv

Also, every ordinal less than

$$
\delta_2^1 = \sup\{\mathsf{otp}(\alpha) \mid \alpha \text{ is a } \Delta_2^1\text{-wellorder}\} = \min\{\sigma \mid L_{\sigma} \prec_{\Sigma_1} L\}
$$

is isomorphic to an R -recursive well-order for some Σ^1_2 -singleton real R.

Hence the previous theorem provides the proof-theoretic meaning of $|T|_{\Pi_2^1}(\alpha)$ for $\alpha < \delta_2^1$.

Hanul Jeon Cornell University

 Ω

Question: Σ^1_2 -altitude

We can define the 'ordinal complexity' for Σ^1_2 -singletons:

Definition

For a Σ^1_2 -singleton R , let us define

$$
\mathsf{Alt}_{\Sigma_2^1}(R) = \min\{\alpha \mid \exists (D, \varrho)[(D, \varrho) \text{ is a genedendron} \}
$$
\n
$$
\text{generating } R \text{ and } D_\alpha \text{ illfounded.} \}
$$

Question

$$
\mathsf{Alt}_{\Sigma_2^1}(R) = \min\{M \cap \mathsf{Ord} \mid M \vDash \mathsf{ATR}_0^{\mathsf{set}} \wedge R \text{ is } \Sigma_1\text{-definable over } M\}
$$

K ロ ⊁ K 伊 ⊁ K ミ QQ \mathbf{p} ∍

Hanul Jeon Cornell University Cornell University Cornell University Cornell University Cornell University

[Introduction](#page-2-0) [Pohlers' Characteristic ordinals](#page-12-0) [Dilators](#page-20-0) [The connection](#page-30-0) [Q&A](#page-43-0)

Any other Questions?

(Removed due to copyright issues)

K ロ ⊁ K 伊 ⊁ K 毛 299

Hanul Jeon Cornell University Cornell University Cornell University Cornell University Cornell University

Thank you!

Hanul Jeon Cornell University