On proof-theoretic dilator and Pohlers' characteristic ordinals

Hanul Jeon

Cornell University

2025-01-15

The 4th Korea Logic Day

Hanul Jeon

Cornell University

Introduction 0000000000 Pohlers' Characteristic ordinals

Dilators 000000 The connection

Q&A

Table of Contents

1 Introduction

2 Pohlers' Characteristic ordinals

3 Dilators

4 The connection

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → �� ♡ � () ♡

Cornell University

Hanul Jeon

Hanul Jeon

Dilators 0000000

Strength of theories

Gödel's incompleteness theorem shows no recursive theory interpreting arithmetic can prove its own consistency unless it is inconsistent.

Problem: How do we 'line up' theories into a hierarchy?

The connection

< ロ > < 回 > < 回 > < 回 > <</p>

Cornell University

Q&A

How to compare the strength of theories?

The most simple way to compare theories is inclusion. (Which theory proves more?)

Example

Clearly ZFC \subseteq ZFC + \neg CH However, a forcing argument shows if ZFC is consistent, then so is ZFC + \neg CH.

Hence both ZFC and ZFC $+ \neg CH$ have the same "consistency strength."

Image: A math a math

Cornell University

Consistency strength

What happens if we compare theories by their "consistency strength?"

Definition

For two theories S and T extending PRA, define

$$S \leq_{\mathsf{Con}} T \iff \mathsf{PRA} \vdash (\mathsf{Con}(T) \to \mathsf{Con}(S))$$

and

$$S <_{\mathsf{Con}} T \iff T \vdash \mathsf{Con}(S).$$

Hanul Jeon

Pohlers' Characteristic ordinals

Dilators 0000000

メロト メロト メヨト メ

Cornell University

\leq_{Con} is ill-behaved

Various logicians (Koellner, Simpson, Steel, ...) pointed out that \leq_{Con} for <u>natural</u> theories is a prewellorder. However,

Theorem (Folklore)

There are theories T_0 and T_1 such that neither $T_0 \leq_{Con} T_1$ nor $T_1 \leq_{Con} T_0$. Also, there are theories $\langle T_n \mid n < \omega \rangle$ such that

$$T_0 >_{\operatorname{Con}} T_1 >_{\operatorname{Con}} T_2 >_{\operatorname{Con}} \cdots$$

Hanul Jeon

Image: A math a math

Cornell University

What is wrong?

There are various ways to explain the gap between the facts and the phenomena.

One way is: \leq_{Con} is too 'finer' than what logicians actually use.

Example

When set theorists prove $S \vdash Con(T)$, they prove 'S proves T has a transitive model' that is stronger than $S \vdash Con(T)$.

Image: A math a math

Cornell University

Proof-theoretic ordinal

Proof-theoretic ordinal gives a linear way to compare theories. Brief history:

1 (Gentzen 1934) If

$$\varepsilon_0 = \sup\{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \cdots\}$$

is well-founded, then PA is consistent.

- **2** (Takeuti 1967) Ordinal analysis of Π_1^1 -CA₀.
- 3 (Arai, Rathjen independently, 1994-1995) Ordinal analysis of Π_2^1 -CA₀.
- 4 (Arai, Pakhomov, Towsner 2024?) Ordinal analysis of the full second-order arithmetic.

< □ > < 同 > < 回 > < Ξ > < Ξ

Definition

For a theory T, let us define the proof-theoretic ordinal of T by

 $|\mathcal{T}|_{\Pi_1^1} = \sup\{ \operatorname{otp}(\alpha) : \alpha \text{ is a recursive linear order} \\ \operatorname{such that} \mathcal{T} \vdash \operatorname{WO}(\alpha) \}.$

It does not precisely gauge the consistency strength of a theory, e.g., $|\mathcal{T}|_{\Pi_1^1} = |\mathcal{T} + \text{Con}(\mathcal{T})|_{\Pi_1^1}$.

Cornell University

Hanul Jeon

Cornell University

What does Proof-theoretic ordinal gauge?

The following theorem hints what proof-theoretic ordinal gauges:

Theorem (Kleene, ACA₀)

For every Π_1^1 -formula* $\phi(X)$ with all free variables displayed, we can uniformly find a recursive linear order $\alpha(X)$ such that

 $\phi(X) \leftrightarrow WO(\alpha(X)).$

i.e., 'Well-foundedness of a recursive linear order' = Π_1^1 .

*A formula of the form "For every real X, (a bounded formula for X)" 📑 👒

Hanul Jeon

< □ > < 同 > < 回 > < Ξ > < Ξ

Cornell University

Q&A

Let us define:

1
$$T \vdash \Sigma_1^1 \phi$$
 iff $T + \sigma \vdash \phi$ for some true Σ_1^1 -sentence σ .

2
$$S \subseteq_{\Pi_1^1}^{\Sigma_1^1} T$$
 iff $S \vdash_{\Pi_1^1}^{\Sigma_1} \phi \implies T \vdash_{\Pi_1^1}^{\Sigma_1^1} \phi$ for every Π_1^1 -sentence ϕ .

Theorem (Walsh 2023)

For Π_1^1 -sound theories S, T extending ACA₀,

$$|S|_{\Pi_1^1} \leq |T|_{\Pi_1^1} \iff S \subseteq_{\Pi_1^1}^{\Sigma_1^1} T.$$

That is, comparing proof-theoretic ordinal is equivalent to comparing Π_1^1 -consequences of a theory modulo true Σ_1^1 -sentences.

Hanul Jeon

The connection

Q&A

Generalizing Proof-theoretic ordinal

Proof-theoretic ordinal gives a linear scale for theories, but its calculation is extremely hard for 'impredicative' theories. In some sense, Proof-theoretic ordinal as a 'scale' is too 'fine' for impredicative theories.

Hanul Jeon

• • • • • • • • • • • • •

Observation

For a Π_1^1 -sound r.e. theory T extending ACA₀,

 $|\mathcal{T}|_{\Pi_1^1} = \sup\{ \operatorname{otp}(\alpha) : \alpha \text{ is an arithmetically definable}$ linear order such that $\mathcal{T} \vdash \operatorname{WO}(\alpha) \}.$

Cornell University

Cornell University

Pohlers' δ

We may use T-provably well-founded linear orders over an <u>expansion</u> of \mathbb{N} to gauge the 'performance' of T.

Definition

Let $\mathfrak{M} = (\mathbb{N}; ...)$ be an expansion of the structure of natural numbers. Suppose that T is an <u>acceptable</u>[†] axiomatization of \mathfrak{M} . Define

 $\delta^{\mathfrak{M}}(T) = \sup\{ \operatorname{otp}(\alpha) : \alpha \text{ is an } \mathfrak{M}\text{-definable linear order} \\ \text{such that } T \vdash \mathsf{WO}(\alpha) \}.$

[†]T is sound and proves every true atomic sentence and first-order induction scheme over \mathfrak{M} .

Hanul Jeon

Cornell University

Spector class

Pohlers focused on the following collection for the expansions:

Definition

A collection Γ of subsets of $\mathbb N$ is a $\underline{Spector\ class}$ if it satisfies the following:

- Every atomic predicate and function over M, and their complements are in Γ. (For functions, consider their graph instead.)
- **2** Γ contains coding scheme for tuples over \mathfrak{M} .
- **3** Γ is closed under $\cap, \, \cup, \, \exists^0, \, \forall^0,$ and trivial combinatorial substitutions.

[‡]Trivial combinatorial substitution is a map that is a composition of projection maps and the tuple map. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

Hanul Jeon

< ロ > < 回 > < 回 > < 回 > <</p>

Cornell University

Definition (continued)

- 4 Γ has a <u>universal set</u>; That is, for each n ∈ N there is an (n+1)-ary relation U ∈ Γ such that every n-ary R ∈ Γ is a section of U.
- 5 Γ has the prewellordering property; That is, for every P ∈ Γ there is a norm σ_P: P → Ord such that the relations
 1 m ≤^{*}_P n ↔ P(m) ∧ [P(n) → (σ(m) ≤ σ(n))], and
 2 m <^{*}_P n ↔ P(m) ∧ [P(n) → (σ(m) < σ(n))]
 are both in Γ.

The structures Pohlers considered take the form $(\mathbb{N}; A)_{A \in \Gamma}$ for a Spector class Γ .

• • • • • • • • • • • •

Cornell University

Example

 Π^1_1 sets and Σ^1_2 sets form Spector classes.

Example

An operator $\mathcal{A} \colon \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is <u>monotone</u> if $X \subseteq Y \to \mathcal{A}(X) \subseteq \mathcal{A}(Y)$. A <u>least fixed point of F</u> is the \subseteq -least set X such that $\mathcal{A}(X) \subseteq X$.

We can construct a least fixed point for a monotone ${\cal A}$ as follows:

$$\mathcal{A}^{0} = \varnothing, \ \mathcal{A}^{\xi} = \bigcup_{\eta < \xi} \mathcal{A}(\mathcal{A}^{\eta})$$

and $\mathcal{A}^* = \bigcup_{\xi < \omega_1} \mathcal{A}^{\xi}$. The set of least fixed points of an arithmetical operator forms a Spector class, and it is equal to Π_1^1 .

Hanul Jeon

イロト イヨト イヨト イヨ

Cornell University

Iterated Spector class

For a collection $\Gamma \subseteq \mathcal{P}(\mathbb{N})$ we can find the next Spector class

 $\mathsf{SP}(\Gamma) = \bigcap \{ \Gamma' \supseteq \Gamma \mid \Gamma' \text{ is a Spector class} \}.$

Definition

For ξ less than the least recursively inaccessible ordinal, define
SP⁰_N = Ø.
SP^{ξ+1}_N is the next Spector class over SP^ξ_N.
SP^δ_N = U_{ξ<δ} SP^ξ_N if δ is limit.

 $\mathsf{SP}^{\delta}_{\mathbb{N}}$ is not a Spector class when δ is a limit.

Hanul Jeon

< ロ > < 回 > < 回 > < 回 > < 回 >

Cornell University

Example (Pohlers)

For $\xi \ge 1$ less than the least recursively inaccessible ordinal, we have $\delta^{SP_{\mathbb{N}}^{\xi}}(ACA_{0} + Th(\mathbb{N}; X)) = \varepsilon \text{ or } t$

$$\delta^{\mathsf{SP}_{\mathbb{N}}^{\varepsilon}}(\mathsf{ACA}_{0}+\mathsf{Th}(\mathbb{N};X)_{X\in\mathsf{SP}_{\mathbb{N}}^{\xi}})=\varepsilon_{\omega_{\xi}^{\mathsf{CK}}+1}$$

Here ω_{ξ}^{CK} is the ξ th admissible (or a limit of admissible) ordinal.

Hanul Jeon

Hanul Jeon

Dilators •000000

Why a dilator?

- Ordinal analysis \implies Analyses Π_1^1 -consequences of a theory.
- For a complicated theory, Π_n^1 -consequences for $n \ge 2$ affect Π_1^1 -consequences.

Cornell University

< □ > < 同 > < Ξ > <</p>

Why a dilator?

- Ordinal analysis \implies Analyses Π_1^1 -consequences of a theory.
- For a complicated theory, Π_n^1 -consequences for $n \ge 2$ affect Π_1^1 -consequences.
- A dilator is the right concept for Π_2^1 -consequences.
- Girard's $\Pi^1_2\text{-proof theory}\implies \text{Analyses }\Pi^1_2\text{-consequences of a theory}$

Image: A math a math

Cornell University

An example: Class ordinals

Example

There is no transitive class isomorphic with Ord + Ord, but there is a way to represent it.

Let X be the class of pairs of the form $(0,\xi)$ or $(1,\xi)$ for an ordinal ξ , and impose an order over X as follows:

•
$$(i, \eta) < (i, \xi)$$
 iff $\eta < \xi$.

• $(0,\eta) < (1,\xi)$ always holds.

Observation: The above construction is 'uniform.'

Let F be a map sending α to the expression for $\alpha + \alpha$. Then

- We can extend F to a functor from the category of linear orders to the same category.
- **2** *F* preserves direct limits and pullbacks.
- 3 If α is a well-order, then so is $F(\alpha)$.

< 口 > < 同 >

Hanul Jeon

Let F be a map sending α to the expression for $\alpha + \alpha$. Then

- We can extend F to a functor from the category of linear orders to the same category.
- **2** F preserves direct limits and pullbacks.
- 3 If α is a well-order, then so is $F(\alpha)$.

Definition

A <u>semidilator</u> is a functor from the category of linear orders LO to LO preserving direct limits and pullbacks. A semidilator F is a dilator if $F(\alpha)$ is a well-order when α is.

< □ > < 同 > < Ξ > <</p>

Cornell University

Hanul Jeon

Image: A mathematical states and a mathem

Q&A 000

Dilators look too 'large,' but it turns out that we can recover a dilator from its small part:

Lemma

Every semidilator is determined by its restriction to the category Nat of finite ordinals.

<u>Cornell</u> University

< 口 > < 同 >

A = > 4

Cornell University

Dilators look too 'large,' but it turns out that we can recover a dilator from its small part:

Lemma

Every semidilator is determined by its restriction to the category Nat of finite ordinals.

Definition

A semidilator D is <u>countable</u> if D(n) is countable for each $n \in \mathbb{N}$ (if viewed as objects of the category of finite ordinals.) A countable semidilator D is <u>A-recursive</u> if we can code the restriction D to Nat into an <u>A-recursive</u> set.

The connection

< □ > < 同 > < Ξ > <</p>

Cornell University

Q&A

The higher Kleene normal form theorem

Dilators represent Π_2^1 -sentences like ordinals represent Π_1^1 -sentences.

Theorem (Girard, ACA_0)

For every Π_2^1 -formula $\phi(X)$ with all free variables displayed, we can uniformly find a recursive semidilator D_X such that

 $\phi(X) \iff D_X$ is a dilator.

Hanul Jeon

イロト イポト イヨト イヨ

Cornell University

Proof-theoretic dilator

Definition

For a theory T, define

 $|T|_{\Pi_2^1} = \sum \{D \mid D \text{ is a recursive semidilator such that}$ $T \vdash D \text{ is a dilator} \}.$

 $|\mathcal{T}|_{\Pi^{1}_{2}}$ is unique up to bi-embeddability.

Example (Aguilera-Pakhomov)

 $|ACA_0|_{\Pi_2^1} = \varepsilon^+$, where ε^+ is a dilator such that $\varepsilon^+(\alpha)$ is the epsilon number greater than α .

Hanul Jeon

< □ > < 同 > < 回 > < Ξ > < Ξ

Cornell University

Q&A

Proof-theoretic dilator and Proof-theoretic ordinal

Theorem (Pakhomov-Walsh, Aguilera-Pakhomov)

Let T be a Π^1_2 -sound r.e. theory and α a recursive well-order. Then

 $|T|_{\Pi_2^1}(\alpha) = |T + \mathsf{WO}(\alpha)|_{\Pi_1^1}.$

Question

What is the proof-theoretic meaning of $|T|_{\Pi_2^1}(\alpha)$ for a non-recursive α ?

Hanul Jeon

Pohlers' Characteristic ordinals

Dilators 000000

イロト イヨト イヨト イヨト

Cornell University

Q&A

A comparison

Example (Pohlers)

For $\xi \geq 1$ less than the least recursively inaccessible ordinal, we have

$$\delta^{\mathsf{SP}^{\xi}_{\mathbb{N}}}(\mathsf{ACA}_0 + \mathsf{Th}(\mathbb{N};\mathsf{SP}^{\xi}_{\mathbb{N}})) = \varepsilon_{\omega_{\xi}^{\mathsf{CK}} + 1} = \varepsilon^+(\omega_{\xi}^{\mathsf{CK}}).$$

Example (Aguilera-Pakhomov)

 $|ACA_0|_{\Pi_2^1} = \varepsilon^+$, where ε^+ is a dilator such that $\varepsilon^+(\alpha)$ is the epsilon number greater than α .

Hanul Jeon

Simplifying Pohlers' framework

 $SP_{\mathbb{N}}^{\xi}$ has infinitely many sets, so cumbersome to handle. We want to find a single set H_{ξ} so that $(\mathbb{N}, X)_{X \in SP_{\mathbb{N}}^{\xi}}$ and (\mathbb{N}, H_{ξ}) define the same sets.

Definition

For a real X, the <u>hyperjump</u> of X is the following set

$$HJ(X) = \{ \ulcorner \phi \urcorner \models_{\Pi_1^1} \phi(X) \text{ with all second-order} \}$$

free variables of ϕ displayed},

イロト イヨト イヨト イ

Cornell University

where $\vDash_{\Pi_1^1}$ is a partial truth predicate for Π_1^1 -formulas.

We can see that $\mathsf{SP}^1_{\mathbb{N}}=\Pi^1_1,\,\mathsf{SP}^2_{\mathbb{N}}=\Pi^1_1[\mathsf{HJ}(\emptyset)],$ etc. In general, we have

Theorem

Hanul Jeon

For ξ less than the least recursively inaccessible ordinal, we have $SP_{\mathbb{N}}^{\xi+1} = \Pi_{1}^{1}[HJ^{\xi}(\emptyset)].$

Cornell University

メロト メロト メヨト メヨ

Cornell University

Q&A

$HJ(\emptyset)$ is 'definable' in the following sense:

Definition

A real R is a Σ_2^1 -singleton if there is a Σ_2^1 -formula $\phi(X)$ such that

$$\phi(R) \wedge \forall X, Y[\phi(X) \wedge \phi(Y) \rightarrow X = Y].$$

 $\mathrm{HJ}^{\xi}(\emptyset)$ is also a Σ^1_2 -singleton for ξ less than the least recursively inaccessible ordinal.

Hanul Jeon

Introduction 0000000000 Dilators 0000000

Cornell University

Genedendron

So far, we reduced iterated Spector classes to appropriate Σ_2^1 -singletons. We want to introduce a recursive object 'generating'§ a Σ_2^1 -singleton.

Hanul Jeon

[§]passively or non-deterministically searching?

< □ > < 同 > < Ξ > <</p>

Cornell University

Definition

- A genedendron is a pair (D, ϱ) such that
 - **1** *D* 'generates' a functorial family $\langle D_{\alpha} \mid \alpha \in \mathsf{Ord} \rangle$ of trees.
 - 2 ρ generates a functorial family $\langle \rho_{\alpha} | \alpha \in \text{Ord} \rangle$, and ρ_{α} is a function taking an infinite branch of D_{α} and returning a real.
 - 3 ρ_{α} is a constant function if defined.

We think of D_{α} a tree and each of the set of immediate successors is linearly ordered. If every set of immediate successors of D_{α} is well-ordered, we say (D, ϱ) is locally well-founded. Introduction 0000000000

Hanul Jeon

Pohlers' Characteristic ordinals

Dilators 0000000 The connection

Q&A

dLB

(日)、<四)、<三</p>

Cornell University

< □ > < 同 > < 回 > < Ξ > < Ξ

Cornell University

By functoriality, a genedendron is completely determined by $(D_{\omega}, \varrho_{\omega})$.

Definition

A genedendron (D, ϱ) is recursive if there is a recursive set coding $(D_{\omega}, \varrho_{\omega})$.

Example (J.)

We can find a recursive well-founded genedendron (D, ϱ) generating HJ(\emptyset) such that $D(\alpha)$ is ill-founded iff $\alpha \ge \omega_1^{CK}$.

Hanul Jeon

Pohlers' Characteristic ordinals

Dilators 0000000 The connection

< □ > < 同 > < Ξ > <</p>

Q&A

ł)}.

Cornell University

$\Pi_1^1[R]$ Proof-theoretic ordinal

Definition

Let *R* be a Σ_2^1 -singleton. For a sound theory *T* proving '*R* uniquely exists,' let us define the $\Pi_1^1[R]$ Proof-theoretic ordinal of *T* by

$$T|_{\Pi_1^1[R]} = \sup\{ \operatorname{otp}(\alpha) : \alpha \text{ is an } R \text{-recursive linear order} \\ \text{such that } T \vdash \operatorname{WO}(\alpha) \}$$

More precisely, we use the Σ_2^1 -singleton definition of R in place of R to formulate the definition.

Hanul Jeon

The connection

Q&A

Cornell University

Pohlers' Characteristic ordinal and $\Pi_1^1[R]$ PTO

Lemma

Let $\xi \geq 1$ be a successor ordinal less than the least recursively inaccessible ordinal. If T is an acceptable axiomatization of $SP_{\mathbb{N}}^{\xi}$, then we have

$$\delta^{\mathsf{SP}^{\mathsf{s}}_{\mathbb{N}}}(T) = |T|_{\mathsf{\Pi}^{1}_{1}[\mathsf{HJ}^{\xi}(\emptyset)]}.$$

Hanul Jeon

< □ > < 同 > < 回 > < Ξ > < Ξ

Cornell University

The main theorem

Theorem (J.)

Let T be a Π_2^1 -sound theory extending ACA₀ and (D, ϱ) be a recursive locally well-founded genedendron generating R. If T proves (D, ϱ) is a locally well-founded genedendron, and α is an R-recursive well-order such that D_α is ill-founded, then

 $|T|_{\Pi_2^1}(\alpha) = |T[R] + \mathsf{WO}(\alpha)|_{\Pi_1^1[R]}.$

Here T[R] is the theory T + 'R exists.'

Hanul Jeon

< 口 > < 同 >

As an instance of the theorem, we can see

$$|\mathsf{ACA}_0 + \mathsf{`HJ}(\emptyset) \text{ exists'}|_{\mathsf{\Pi}_1^1[\mathsf{HJ}(\emptyset)]} = |\mathsf{ACA}_0|_{\mathsf{\Pi}_2^1}(\omega_1^{\mathsf{CK}}) = \varepsilon_{\omega_1^{\mathsf{CK}}+1}.$$

Hence we can reproduce Pohlers' result from the proof-theoretic dilator of ACA_0 and appropriate genedendrons.

Hanul Jeon

Also, every ordinal less than

$$\delta_2^1 = \sup\{ \mathsf{otp}(\alpha) \mid \alpha \text{ is a } \Delta_2^1 \text{-wellorder} \} = \min\{\sigma \mid L_\sigma \prec_{\Sigma_1} L\}$$

is isomorphic to an *R*-recursive well-order for some Σ_2^1 -singleton real *R*.

Hence the previous theorem provides the proof-theoretic meaning of $|\mathcal{T}|_{\Pi_2^1}(\alpha)$ for $\alpha < \delta_2^1$.

Question: Σ_2^1 -altitude

We can define the 'ordinal complexity' for Σ_2^1 -singletons:

Definition

For a Σ_2^1 -singleton R, let us define

$$\operatorname{Alt}_{\Sigma_2^1}(R) = \min\{\alpha \mid \exists (D, \varrho) | (D, \varrho) \text{ is a genedendron} \\$$

generating R and D_{α} illfounded.

Question

 $\operatorname{Alt}_{\Sigma_2^1}(R) = \min\{M \cap \operatorname{Ord} \mid M \vDash \operatorname{ATR}_0^{\operatorname{set}} \land R \text{ is } \Sigma_1 \operatorname{-definable over } M\}$

・ロト・日本・日本・日本・日本・今日・

1}

Cornell University

Hanul Jeon

Introduction 0000000000

Hanul Jeon

Pohlers' Characteristic ordinals

Dilators 0000000 The connection

Image: A math a math

Q&A 0●0

Any other Questions?

(Removed due to copyright issues)

Cornell University

Q&A

Thank you!

Hanul Jeon

Cornell University