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Strength of theories

Godel’s incompleteness theorem shows no recursive theory
interpreting arithmetic can prove its own consistency unless it is
inconsistent.

A theory proving its N A hierarchy of
own consistency theories

Problem: How do we ‘line up’ theories into a hierarchy?
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How to compare the strength of theories?

The most simple way to compare theories is inclusion. (Which
theory proves more?)

Example

Clearly ZFC C ZFC + -CH
However, a forcing argument shows if ZFC is consistent, then so is
ZFC + —CH.

Hence both ZFC and ZFC + —CH have the same “consistency
strength.”
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Consistency strength

What happens if we compare theories by their “consistency
strength?”

For two theories S and T extending PRA, define

S <con T <= PRAF (Con(T) — Con(S))

and
S<con T < TF Con(S).
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<con Is ill-behaved

Various logicians (Koellner, Simpson, Steel, ...) pointed out that
<con for natural theories is a prewellorder. However,

Theorem (Folklore)

There are theories Tg and Ty such that neither To <con T1 nor
Tl §Con TO-
Also, there are theories (T, | n < w) such that

TO >Con 7_1 >Con T2 >Con """ -
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What is wrong?

There are various ways to explain the gap between the facts and
the phenomena.
One way is: <con is too ‘finer’ than what logicians actually use.

Example

When set theorists prove S = Con(T), they prove ‘S proves T has
a transitive model’ that is stronger than S + Con(T).
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Proof-theoretic ordinal

Proof-theoretic ordinal gives a linear way to compare theories.
Brief history:

(Gentzen 1934) If
gg = sup{w,w‘”,w“’w, y

is well-founded, then PA is consistent.

(Takeuti 1967) Ordinal analysis of M}-CA,.

(Arai, Rathjen independently, 1994-1995) Ordinal analysis of
I"I%—CAO.

(Arai, Pakhomov, Towsner 20247) Ordinal analysis of the full
second-order arithmetic.
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For a theory T, let us define the proof-theoretic ordinal of T by

|T]|—|% = sup{otp(«) : « is a recursive linear order

such that T - WO(«)}.

It does not precisely gauge the consistency strength of a theory,
e.g. |T||-|% =T+ Con(T)||-|%.
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What does Proof-theoretic ordinal gauge?

The following theorem hints what proof-theoretic ordinal gauges:

Theorem (Kleene, ACAg)

For every ﬂ%—formula* o(X) with all free variables displayed, we
can uniformly find a recursive linear order o(X) such that

$(X) < WO(a(X)).

i.e., ‘Well-foundedness of a recursive linear order’ = 1.

*A formula of the form “For every real X, (a bounded formula-for X)"
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Let us define:
T ¢ iff T+ o ¢ for some true Yi-sentence o.

1
S gﬁi Tiff SFT ¢ = T 1 ¢ for every Ml-sentence ¢.

Theorem (Walsh 2023)
For Mi-sound theories S, T extending ACA,

Zl

That is, comparing proof-theoretic ordinal is equivalent to
comparing Mi-consequences of a theory modulo true ¥1-sentences.
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Generalizing Proof-theoretic ordinal

Proof-theoretic ordinal gives a linear scale for theories, but its
calculation is extremely hard for ‘impredicative’ theories.

In some sense, Proof-theoretic ordinal as a ‘scale’ is too ‘fine’ for
impredicative theories.
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For a Mi-sound r.e. theory T extending ACA,

| Tln: = sup{otp(a) : a is an arithmetically definable
linear order such that T F WO(«)}.
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Pohlers’ &

We may use T-provably well-founded linear orders over an
expansion of N to gauge the ‘performance’ of T.

Definition

Let 9t = (N;...) be an expansion of the structure of natural

numbers. Suppose that T is an acceptable! axiomatization of 9.
Define

6™(T) = sup{otp(a) :  is an M-definable linear order
such that T+ WO(a)}.

T is sound and proves every true atomic sentence and first-order induction
scheme over M.
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Spector class

Pohlers focused on the following collection for the expansions:

A collection I' of subsets of N is a Spector class if it satisfies the

following:

Every atomic predicate and function over 90, and their
complements are in . (For functions, consider their graph
instead.)

I" contains coding scheme for tuples over 9.

I is closed under N, U, 3% 9, and trivial combinatorial
substitutions.t

Trivial combinatorial substitution is a map that is a composition of projec-
tion maps and the tuple map.
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Definition (continued)

I has a universal set; That is, for each n € N there is an
(n+ 1)-ary relation U € T such that every n-ary R€T is a
section of U.

I" has the prewellordering property; That is, for every P € [
there is a norm op: P — Ord such that the relations

m<p i < P(m)A[P(A) — (o(m) < o(A))], and
m<pn < P(m)A[P(A) — (o(m) < a(n))]
are both in .

The structures Pohlers considered take the form (N; A) acr for a
Spector class I
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M} sets and 1 sets form Spector classes.

Example
An operator A: P(N) — P(N) is monotone if
XCY — A(X) CA(Y). A least fixed point of F is the C-least

set X such that A(X) C X.
We can construct a least fixed point for a monotone A as follows:

A0 = @, AS =, ¢ A(A7)

and A" = e, AS. The set of least fixed points of an
arithmetical operator forms a Spector class, and it is equal to I'I}.

Hanul Jeon Cornell University

On proof-theoretic dilator and Pohlers’ characteristic ordinals



Pohlers’ Characteristic ordinals
00000080

Iterated Spector class

For a collection ' € P(N) we can find the the next Spector class

SP(MN =N{I" 2T | I"is a Spector class}.

For & less than the least recursively inaccessible ordinal, define
SPY = 2.
SPgNJrl is the next Spector class over SPI%.
SPR = Ugs SPY; if 8 is limit.

SPY is not a Spector class when 4 is a limit.
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Example (Pohlers)

For £ > 1 less than the least recursively inaccessible ordinal, we
have

13
5SPx (ACAp + Th(N; X)XESPg) = 5w§CK+1

Here ng is the £th admissible (or a limit of admissible) ordinal.
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Why a dilator?

m Ordinal analysis = Analyses Mi-consequences of a theory.

m For a complicated theory, M}-consequences for n > 2 affect
Mi-consequences.
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Why a dilator?

m Ordinal analysis = Analyses Mi-consequences of a theory.

m For a complicated theory, M}-consequences for n > 2 affect
Mi-consequences.

m A dilator is the right concept for ﬂ%—consequences.

m Girard's I'I%—proof theory = Analyses I_I%—consequences of a
theory
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An example: Class ordinals

Example

There is no transitive class isomorphic with Ord + Ord, but there is
a way to represent it.

Let X be the class of pairs of the form (0, &) or (1,£) for an ordinal
&, and impose an order over X as follows:

m (i,n) < (i,&)iffn <&,
m (0,7n) < (1,¢) always holds.

Observation: The above construction is ‘uniform.’
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Dilators

Let F be a map sending « to the expression for a4+ . Then

We can extend F to a functor from the category of linear
orders to the same category.

F preserves direct limits and pullbacks.

If « is a well-order, then so is F(«).
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Dilators

Let F be a map sending « to the expression for a4+ . Then

We can extend F to a functor from the category of linear
orders to the same category.

F preserves direct limits and pullbacks.

If « is a well-order, then so is F(«).

Definition
A semidilator is a functor from the category of linear orders LO to

LO preserving direct limits and pullbacks.
A semidilator F is a dilator if F(«) is a well-order when « is.
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Dilators look too ‘large,’ but it turns out that we can recover a
dilator from its small part:

Lemma

Every semidilator is determined by its restriction to the category
Nat of finite ordinals.
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Dilators look too ‘large,’ but it turns out that we can recover a
dilator from its small part:

Lemma

Every semidilator is determined by its restriction to the category
Nat of finite ordinals.

Definition

A semidilator D is countable if D(n) is countable for each n € N
(if viewed as objects of the category of finite ordinals.)

A countable semidilator D is A-recursive if we can code the
restriction D to Nat into an A-recursive set.
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The higher Kleene normal form theorem

Dilators represent IN3-sentences like ordinals represent
Mi-sentences.

Theorem (Girard, ACAp)

For every N3-formula ¢(X) with all free variables displayed, we can
uniformly find a recursive semidilator Dx such that

¢(X) <= Dx is a dilator.

Hanul Jeon Cornell University

On proof-theoretic dilator and Pohlers’ characteristic ordinals



Dilators
0000080

Proof-theoretic dilator

For a theory T, define

|T],—,§ =Y {D | D is a recursive semidilator such that
T+ D is a dilator}.

|T||-|% is unique up to bi-embeddability.

Example (Aguilera-Pakhomov)

|ACAo|ny = ™, where £* is a dilator such that £¥(a) is the
epsilon number greater than a.

Hanul Jeon Cornell University
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Proof-theoretic dilator and Proof-theoretic ordinal

Theorem (Pakhomov-Walsh, Aguilera-Pakhomov)

Let T be a Ni-sound r.e. theory and « a recursive well-order. Then

| Tlny(@) = [T +WO(a)|;-

Question

What is the proof-theoretic meaning of |T],-,%(oz) for a
non-recursive a?

Hanul Jeon Cornell University
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A comparison

Example (Pohlers)

For £ > 1 less than the least recursively inaccessible ordinal, we
have

5PR(ACAg + Th(N; SP%,)) = i1 = £ (WEX).

Example (Aguilera-Pakhomov)

|ACAq|ry = €™, where ™ is a dilator such that e™(a) is the
epsilon number greater than «.
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Simplifying Pohlers’ framework

SP5N has infinitely many sets, so cumbersome to handle.

We want to find a single set Hg so that (N, X), gpe and (N, H)
N

define the same sets.

For a real X, the hyperjump of X is the following set

HI(X) = {"¢" ||=|—|% ¢(X) with all second-order
free variables of ¢ displayed},

where lzn% is a partial truth predicate for I'I%—formulas.

Hanul Jeon Cornell University
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We can see that SPY, = N}, SP% = Mi[HJ(D)], etc. In general, we
have

Theorem

For & less than the least recursively inaccessible ordinal, we have
SR = Ni[HJE(O)]

Hanul Jeon Cornell University
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Y 1-singleton real

HJ(() is ‘definable’ in the following sense:

Definition

A real R is a X1-singleton if there is a ¥3-formula ¢(X) such that

H(R)ANVX,Y[p(X)Ap(Y) = X =Y].

HJS(0) is also a ¥ 1-singleton for ¢ less than the least recursively
inaccessible ordinal.

Hanul Jeon Cornell University
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Genedendron

So far, we reduced iterated Spector classes to appropriate
¥ 3-singletons. We want to introduce a recursive object
‘generating’$ a ¥ 1-singleton.

Spassively or non-deterministically searching?

Hanul Jeon Cornell University
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Definition
A genedendron is a pair (D, g) such that
D ‘generates’ a functorial family (D, | « € Ord) of trees.

o0 generates a functorial family (g, | @ € Ord), and g, is a
function taking an infinite branch of D, and returning a real.

0 is a constant function if defined.

We think of D, a tree and each of the set of immediate successors
is linearly ordered. If every set of immediate successors of D, is
well-ordered, we say (D, ) is locally well-founded.
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By functoriality, a genedendron is completely determined by
(D 0w)-

Definition

A genedendron (D, p) is recursive if there is a recursive set coding
(D., 0w)-

Example (J.)

We can find a recursive well-founded genedendron (D, g)
generating HJ(0) such that D(«) is ill-founded iff o > wEK.

Hanul Jeon Cornell University
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M1[R] Proof-theoretic ordinal

Let R be a Y3-singleton. For a sound theory T proving ‘R uniquely
exists,’ let us define the M1[R] Proof-theoretic ordinal of T by

| Tlrry = sup{otp(«) : a is an R-recursive linear order

such that T - WO(«)}.

More precisely, we use the ¥3-singleton definition of R in place of
R to formulate the definition.
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Pohlers’ Characteristic ordinal and Mi[R] PTO

Lemma

Let € > 1 be a successor ordinal less than the least recursively
inaccessible ordinal. If T is an acceptable axiomatization of SPI%,
then we have

¢
3*PH(T) = | Tlhpse oy
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The main theorem

Theorem (J.)

Let T be a M3-sound theory extending ACAq and (D, o) be a
recursive locally well-founded genedendron generating R.

If T proves (D, o) is a locally well-founded genedendron, and « is
an R-recursive well-order such that D,, is ill-founded, then

| Tlny(@) = | TIR] + WO(@)lysy-

Here T[R] is the theory T + ‘R exists.’
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As an instance of the theorem, we can see
] - 1 K
|ACAO + HJ(@) exists ’I_I%[HJ(@)] = ‘ACAO||-|%(LU]F ) = Ewch-i-l'

Hence we can reproduce Pohlers’ result from the proof-theoretic
dilator of ACAg and appropriate genedendrons.
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Also, every ordinal less than
63 = sup{otp(a) | a is a Al-wellorder} = min{c | L, <5, L}

is isomorphic to an R-recursive well-order for some ¥1-singleton
real R.

Hence the previous theorem provides the proof-theoretic meaning
of |T||—|%(oz) for oo < 63.

Hanul Jeon Cornell University

On proof-theoretic di cteristic ordinals



Question: ¥ l1-altitude
2

We can define the ‘ordinal complexity' for ¥1-singletons:

For a ¥1-singleton R, let us define

AItZ%(R) = min{a | 3(D, 0)[(D, o) is a genedendron
generating R and D, illfounded.|}

Question

Altz%(R) = min{MNOrd | M E ATRF*AR is ¥1-definable over M}
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(Removed due to copyright issues)
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Thank you!
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