An introduction to model companion : Infinite sets are not trivial!

Junguk Lee

Changwon National University

The 3rd Korea Logic Day January 12th 2024

- My goal is to convince that infinite sets are not trivial (in a model theoretic view point).
- I will introduce a notion of model companion from model theory.
- In the term of model companion, infinite sets are special as like
 - dense linear order without end points between linear orders,
 - random graphs between graphs,
 - algebraic closed fields between fields.

Case Study

Some conventions

- Fix a language \mathcal{L} .
- Given a structure *M* = (*M*;...), we use the underlying set *M* for the structure *M*.
- We use x, y, z, ... for a tuple of variables if there is no confusion.
- We mean $a \in M$ a tuple of elements in M^1 .
- Given a formula $\varphi(x)$ and $a \in M^{|x|}$, we write

$$\mathcal{M}\models \varphi(a)$$

if $\varphi(a)$ holds in \mathcal{M} . Conventionally, let us call such a tuple a solution of $\varphi(x)$.

What to do?

• Fix a theory T.

Let

$$(\mathcal{C}=)\mathcal{C}_{\mathcal{T}}:=\{M:M\models T\}$$

be the class of all models of T.

- I will take a specific class C^* related to C, which is **elementary**.
- That is, there is a theory T^* such that

$$\mathcal{C}^* = \{ M^* \in \mathcal{C} : M^* \models T^* \}.$$

• I try to convince that the taken class \mathcal{C}^* is *special* in some sense.

- Let $\mathcal{L} = \emptyset$ and let $\mathcal{T} = \emptyset$.
- $\bullet\,$ Then, ${\cal C}$ is the class of all sets without any structures except the equality.
- Let \mathcal{C}^* be the class of all infinite sets, which is **elementary**.
- Then, \mathcal{C}^* is special in the following way:
 - $(\forall M \in \mathcal{C})(\exists M^* \in \mathcal{C}^*)(M \hookrightarrow M^*).$
 - $(\forall M^* \in \mathcal{C}')(\exists M \in \mathcal{C})(M^* \hookrightarrow M).$
 - \bullet Any structure in \mathcal{C}^* is existentially closed in the following sense:

- Take $M^* \in \mathcal{C}^*$, which is just a infinite set arbitrary.
- Let φ(x, y) be a quantifier-free formula. That is, φ(x, y) says about (in)equalities between variables in the tuples x and y.
- Consider the case $x = (x_1)$ and $y = (y_1, y_2)$.
- Take $b \in (M^*)^{|y|}$ arbitrary.
- Suppose there is an extension $M \in \mathcal{C}$ of M^* such that

$$M \models \exists x(\varphi(x, b)).$$

Let $a \in M$ be a solution of $\varphi(x, b)$.

• WLOG, by the disjunctive normal form (DNF), we may assume that $\varphi(x, y)$ is equivalent to one of the following:

$$\begin{cases} x = y_1 \land x = y_2, \\ x = y_1 \land x \neq y_2, \\ x \neq y_1 \land x = y_2, \\ x \neq y_1 \land x \neq y_2. \end{cases}$$

• For example,
$$\varphi(x,y) \equiv x \neq y_1 \land x \neq y_2$$
 and

$$M \models a \neq b_1 \land a \neq b_2.$$

• Then, since M^* is infinite, we can find a^* in M^* such that $a^* \neq b_1, b_2$, which is a solution of $\varphi(x, b)$, and so

$$M^* \models \exists x(\varphi(x, b)).$$

• In summary, if a system of (in)equations over M^* is consistent in C, then it has already a solution in M^* .

- Let $\mathcal{L} = \{<\}$ and let \mathcal{T} be the theory of linear orders.
- $\bullet\,$ Then, ${\cal C}$ is the class of all linear orders.

Case Study

- \bullet Let \mathcal{C}^* be the class of all dense linear orders without endpoints, which is elementary.
- Denote *DLO* by the theory of dense linear orders without endpoints.
- $\bullet\,$ Then, \mathcal{C}^* is special as like infinite sets, that is,
 - $(\forall M \in \mathcal{C})(\exists M^* \in \mathcal{C}^*)(M \hookrightarrow M^*).$
 - $(\forall M^* \in \mathcal{C}^*)(\exists M \in \mathcal{C})(M^* \hookrightarrow M).$
 - Any linear order in \mathcal{C}^* is existentially closed in $\mathcal{C}.$

• Take $M^* \models DLO$.

Case Study

- Let φ(x, y) be a quantifier-free formula. That is, φ(x, y) is a system of inequalities between variables x and y.
- Consider the case $x = (x_1)$ and $y = (y_1, y_2)$.
- Take $b \in (M^*)^{|y|}$ arbitrary.
- Suppose there is an extension $M \in \mathcal{C}$ of M^* such that

$$M \models \exists x(\varphi(x, b)).$$

Let $a \in M$ be a solution of $\varphi(x, b)$.

 WLOG, we may assume that for b = (b₁, b₂), b₁ < b₂ and a ≠ b₁, b₂. By DNF, we may assume that φ(x, y) is equivalent to one of the following:

$$\begin{cases} x < y_1 < y_2, \\ y_1 < x < y_2, \\ y_1 < y_2 < x. \end{cases}$$

• Since M^* is dense and has no end points, we can find a solution of $\varphi(x, b)$, that is,

$$M^* \models \exists x(\varphi(x, b)).$$

11/20

- Let $\mathcal{L}_{ring} = \{+, \cdot, 0, 1\}$ be the ring language and \mathcal{T} be the theory of field.
- \bullet Let ${\mathcal C}$ be the class of fields satisfying

$$\exists x \forall y (x \neq y^2).$$

- Let \mathcal{C}^* be the class of algebraically closed fields, which is elementary.
- Then, C^* is special as like infinite sets and DLO.
 - $(\forall M \in \mathcal{C})(\exists M^* \in \mathcal{C}^*)(M \hookrightarrow M').$
 - $(\forall M^* \in \mathcal{C}^*)(\exists M \in \mathcal{C})(M^* \hookrightarrow M).$
 - Any field in \mathcal{C}^* is existentially closed in $\mathcal{C}.$
- Indeed,
 - Given a field $K \in C$, the algebraical closure $K^* \in C^*$.
 - Given $K^* \in \mathcal{C}^*$, $K^*(t) \in \mathcal{C}$ for a transcendental element t outside K^* .

- Let M^* be an algebraically closed field.
- Let $\varphi(x, y)$ be a quantifier-free formula.
- WLOG, by DNF, we may assume that

$$\varphi(x,y)\equiv\bigvee\varphi_i(x,y)$$

where each $\varphi_i(x, y)$ is of the form: For some $f_1(y; x), \ldots, f_n(y; x)$ and g(y; x) in $\mathbb{Z}[y][x]$,

$$\bigwedge f_k(y;x) = 0 \land g(y;x) \neq 0,$$

that is, a system of (in)equations of polynomials in $\mathbb{Z}[y][x]$.

• So, each $\varphi_i(x, y) (\equiv \bigwedge f_k(y; x) = 0 \land g(y; x) \neq 0)$ parametrizes Zariski open subsets of the algebraic set defined by the system of equations

$$\bigwedge f_k(y;x)=0$$

in the parameter y.

• Take $b \in (M^*)^{|y|}$ such that $\varphi(x, b)$ is consistent.

Case Study OCOCO Algebraically closed field

- That is, there is a field M extending M^{*} such that φ(M, b) ≠ Ø and so one of Zariski open sets φ_i(M, b) is non-empty.
- Note that for any system S of (in)equations of polynomials over M*, the M*-rational points of S is Zariski dense.
- So, for each *i*, $\varphi_i(M^*, b)$ is a Zariski dense subset of $\varphi_i(M, b)$.
- Thus, φ(M*, b) ≠ Ø because one of Zariski open sets φ_i(M, b) is non-empty, and so

$$M^* \models \exists x (\varphi(x, b)).$$

- In '56, Robinson introduced a notion of model companion, which isolate a common phenomena seen in infinite sets, DLOs, and algebraically closed fields.
- Let T be a theory in \mathcal{L} .

Case Study

• A \mathcal{L} -theory \mathcal{T}^* is called model companion if

•
$$(\forall M \models T)(\exists M^* \models T^*)(M \hookrightarrow M^*).$$

•
$$(\forall M^* \models T^*)(\exists M \models T)(M' \hookrightarrow M).$$

- Each $M^* \models T^*$ is existentially closed.
- And such a model-companion T^* of T is unique if it exists.
- Note that it is not necessary that T^* extends T.
- For example, consider the following:
 - \mathcal{T} is the theory of fields satisfying

$$\exists x \forall y (x \neq y^2).$$

• T^* is the theory of algebraically closed field.

Syntactical results on the model companion

- Let T^* be the model companion of T (if exists).
- We have the following syntactical results on the model companion.
- First, T^* is axiomatized by $\forall \exists$ -sentences.
- Second, any formula is equivalent to a universal formula modulo T^* . That is, given a formula $\varphi(x)$, there is a quantifier free formula $\psi(x, y)$ such that

$$T^* \models \varphi(x) \leftrightarrow \forall y \psi(x, y).$$

Example

- In L = {E}, the theory of the random graph is the model companion of the theory of graphs.
- ② In the language $\mathcal{L}_{or} = \mathcal{L}_{ring} \cup \{<\}$ of ordered rings, *RCF* is the model companion of the theory of ordered fields.
- So In the language $\mathcal{L}_{dr} = \mathcal{L}_{ring} \cup \{\partial\}$ of differential field, *DCF* is the model companion of the theory of differential fields.
- In the language $\mathcal{L}_{gp} = \{\cdot, ^{-1}, 1\}$ of group, the theory of divisible abelian groups is the model companion of the theory of torsion-free abelian groups.

- In \mathcal{L}_{gp} , there is NO model-companion of the theory of groups.
- Indeed, there is an existentially closed group but being existentially closed between all groups is NOT elementary.
- We first review several consequences of being existentially closed.
- Let G be a existentially closed group.
- First, we show that for any $a \in G$,

 $\operatorname{Aut}(G)a = \operatorname{Inn}(G)a$,

where $\operatorname{Inn}(G) := \{g : x \mapsto g^{-1}xg : g \in G\}.$

- Namely, let $a, b \in G$ and $\sigma \in Aut(G)$ with $b = \sigma(a)$.
- Consider the group Aut(G) κ G with σ(g) = σ⁻¹gσ for σ ∈ Aut(G) and g ∈ G.
- Consider the existential G-formula

$$\exists x(x^{-1}ax=b).$$

• Then, $\operatorname{Aut}(G) \ltimes G \models \exists x(x^{-1}ax = b) \text{ and } G \subset \operatorname{Aut}(G) \ltimes G$. Thus,

$$G \models \exists x (x^{-1}ax = b).$$

• Second, we show that for any cyclic group C_p of prime order p,

 $C_p < G$

• Consider the existential formula

 $\exists x (x \neq e \land x^p = e).$

• Then, $C_p imes G \models \exists x (x \neq e \land x^p = e)$. Thus,

$$G \models \exists x (x \neq e \land x^p = e).$$

19 / 20

- Now, we assume that there is a model companion \mathcal{T}^* of the theory of groups.
- Let $G \models T^*$ be κ -saturated and strongly κ -homogeneous for some $\kappa > (2^{\aleph_0})^+$, and so it is existentially closed.
- Consider the equivalence relation x ≡ y, which is definable by the formula ∃z(x = zyz⁻¹).
- $\bullet~\mbox{Since}~\ensuremath{\mathcal{L}_{gp}}$ is countable,

$$|G/\equiv|\leq 2^{\aleph_0}.$$

- Thus, G/\equiv is finite. Namely, if G/\equiv is infinite, by compactness, $|G/\operatorname{Aut}(G)| \ge \kappa$, which is impossible because $|G/\equiv| \le 2^{\aleph_0} < \kappa$.
- But G / ≡ is infinite because for each prime p, C_p ⊂ G and for primes p ≠ p', C_p ≇ C_{p'}.

[1] A. Robinson,

Complete theories, North-Holland Publishing Co., Amsterdam, (1956), 129 pp.

[2] A. Robinson,

On the concept of a differentially closed field, *Bull. Res. Council Israel Sect.*, (1959), 113-128.

[3] K. Tent and M. Ziegler,

A course in model theory, Lecture Notes in Logic, ${\bf 40},$ Cambridge University Press, 2012, 248 pp.