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Rewriting Logic

José Meseguer Joseph Goguen

• Fragment of first-order logic with two relations: equality = and evolution →
• Equations (∀X) t = t′ and rules (∀X) t → t′

• Axioms: reflexivity, equality, congruence, replacement, transitivity
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Rewriting Logic

• Semantic framework
• Concurrency models: actors, process calculi, Petri nets, …
• Programming languages: C, Java, JavaScript, Scheme, Haskell, …
• Modeling languages: Verilog, ABEL, AADL, Ptolemy II, PLEXIL, …

• Modeling framework
• Concurrent object-oriented systems, real-time embedded systems, …
• Scheduling protocols, network protocols, security protocols, …
• Hardware designs, systems biology, …

• Formal analysis framework
• Reachability analysis, model checking, theorem proving, …
• Real-time systems, probabilistic systems, hybrid systems, …
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History

• Clear (Edinburgh) 1970s

• OBJ family (Stanford, Oxford) 1980s

• Maude (SRI, UIUC), ELAN (France), CafeOBJ (Japan) present
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Rewriting Logic Specification: Informal Description

• State: algebraic data structures
• recursive data types and functions
• lists, sets, multi-sets, …

• (Concurrent) transition: evolution of patterns
• rewrite rule t → t′
• pattern t (concurrently) evolves to pattern t′
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Example: Very Simple Parallel Language (2)

• Configuration

Thread1

Code

Thread2

Code

…

Threadk

Code x1 ← i1
x1 ← i1
x2 ← i2

. . .

xn ← in

Shared
Memory

• Defined as logical term of the form:

{[1,Code1] | [2,Code2] | · · · | [k,Codek], [x1, i1] [x2, i2] · · · [xn, i, n]}
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Example: Very Simple Parallel Language (3)

• Semantics of program defined as rewrite rules R:

{[I, skip ;P] | THREADS,MEM}
→ {[I,P] | THREADS,MEM}

{[I, (V = E ) ;P] | THREADS,MEM}
→ {[I, (V = E ) ;P] | THREADS, update(MEM, [V, eval(E )])}

{[I, if (T ) {P} ;P′] | THREADS,MEM}
→ {[I,

(
eval(T ) ?P : skip

)
;P′] | THREADS,MEM}

{[I,while (T ) {P} ;P′] | THREADS,MEM}
→ {[I,

(
eval(T ) ? (P ;while (T ) {P}) : skip

)
;P′] | THREADS,MEM}

• Aux functions (eval, update, _?_ : _) are defined by equations E
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Example: Very Simple Parallel Language (4)

• Dekker’s algorithm
• only one thread can enter its critical section.
• hard to guarantee its correctness by testing

Thread 1
1 c1 = 1;
2 while (c2 == 1) {
3 if (turn == 2) {
4 c1 = 0;
5 while (turn == 2) { /∗ busy wait ∗/ }
6 c1 = 1;
7 }
8 }
9 ... /∗ critical section ∗/

10 turn = 2;
11 c1 = 0;
12 ...

Thread 2
1 c2 = 1;
2 while (c1 == 1) {
3 if (turn == 1) {
4 c2 = 0;
5 while (turn == 1) { /∗ busy wait ∗/ }
6 c2 = 1;
7 }
8 }
9 ... /∗ critical section ∗/

10 turn = 1;
11 c2 = 0;
12 ...
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Example: Very Simple Parallel Language (5)

Dekker’s Algorithm

{
[1, c1 = 1; while (c2 == 1) { if (turn == 2) { c1 = 0; while (turn == 2) { skip } ;

c1 = 1 } } ; crit ; turn = 2 ; c1 = 0]
|
[2, c2 = 1; while (c1 == 1) { if (turn == 1) { c2 = 0; while (turn == 1) { skip } ;

c2 = 1 } } ; crit ; turn = 1 ; c2 = 0]
,
[c1,0] [c2,0] [turn,1]
}

• Can execute specification using rewrite rules

• Can enumerate all possible configurations by interleaving
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Example: Very Simple Parallel Language (6)

• Graph by examining all possible interleaving
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Rewrite Theories

• Concurrent system specifications in rewriting logic

• Rewrite theory R = (Σ,E,R):
Σ : signature for logical terms t ∈ TΣ

E : equations defining equalities t = t′

R : rewrite rules specifying labeled transitions l : t −→ t′

• R specifies a concurrent system
• states: elements of algebraic data structure by equational theory (Σ,E)
• concurrent transitions are specified by the rules R.
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Rewriting Logic: Rules of Deduction

• Reflexivity

R ⊢ t −→ t

• Transitivity

R ⊢ t1 −→ t2 R ⊢ t2 −→ t3

R ⊢ t1 −→ t3
• Equality

E ⊢ u′ = u R ⊢ u −→ v E ⊢ v = v′

R ⊢ u′ −→ v′

• Congruence
R ⊢ t1 −→ t′1 · · · R ⊢ tn −→ t′n

R ⊢ f(t1, . . . , tn) −→ f(t′1, . . . , t′n)

• Replacement
t(x1, . . . , xn) → u(x1, . . . , xn) ∈ R R ⊢ p1 −→ p′

1 · · · R ⊢ pn −→ p′
n

R ⊢ t[p1/x1, . . . , pn/xn] −→ u[p′
1/x1, . . . , p′

n/xn] 13



Models of Rewrite Theories

Definition (Reachability Model)
A Σ-reachability model is a pair A→ = (A,→A), where

• A is a Σ-algebra, and
• →A is a reflexive, transitive, and congruence relation on u(A).

• A→ is an ordinary first-order structure with a binary relation →.
• A→ = (A,→A) satisfies R = (Σ,E,R) iff: A |= E and α(t) →A α(t′) for each

rule t → t′ ∈ R and assignment α : X → u(A)
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Soundness and Completeness of Rewriting Logic

Theorem
Given a rewrite theory R = (Σ,E,R) for any terms t, t′ ∈ TΣ(X):

R |= t −→ t′ ⇐⇒ R ⊢ t −→ t′
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Computability Conditions (1)

• Equations E (oriented) are ground confluent and terminating

t t1

t2 t′
E∗

E∗

E!

E!

• Any term has E-normal form

• Equality between two terms becomes decidable
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Computability Conditions (2)

• Rules R are ground coherent with respect to E

t t′

w

u u′

E!

R1

R1

E!

E!

• Rule application of E-normal form is complete

• One-step rewrites become decidable
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Maude

• Language and tool for rewriting logic

• Rewriting-based declarative programming language

• High-performance analysis tool

• Available at http://maude.cs.illinois.edu
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Some Applications

• Distrubted systems, protocols, and algorithms
• IETF multicast protocols, wireless sensor network algorithms, …
• Cloud transaction systems: Apache Cassandra, Google’s Megastore, ZooKeeper, …

• Programming languages
• C, Java, JVM, Scheme, Ethereum smart contracts, …
• Verilog, NASA Plan Execution Language (Plexil), AADL, Ptolemy II, …

• Security
• Found address/status bar spoof attacks in Internet Explorer
• Security protocol verificaion tools: Maude-NPA, Tamarin, …

• Neuroscience, biological reactions (e.g., Pathway Logic at SRI), …
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Some Recent Progress

• More powerful formal analysis
• A new inductive theorem prover (NuITP)
• Infinite-state model checking

• Combination of rewriting logic with other formalisms
• Satisfiability modulo theories (SMT)
• Interactive theorem proving: Lean, Coq, …

• New applications
• Cyber-physical systems: discrete + continuous
• Quantum-resistant security protocol
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Thank you!
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