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Introduction

In group theory, a group is often given by a finite presentation, such as

G=(x1,...;¢p |71, ., Tm ).

© 2? = (xz,y | zyz~ty~') (the free abelian group of rank 2),
© Sy = (xz,y|a? y? (zy)*) (the symmetric group of degree 3, order 6).

For a given finite presentation of a group H, the word problem of H (w.r.t.
the presentation) is the following decision problem:

Word problem of A (Dehn, 1911)

Input: two words u, v on the generators
Question: does u =vin H? (<= u v =1p)
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Word problem for groups (1/2)

Definition (word problem)

Let H be a finitely generated group, X be a finite alphabet, and p: ¥* — H
be a surjective monoid homomorphism. The word problem of H is
defined as WP,(H) := p~!(1y), where 1y € H is the identity element.
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Word problem for groups (1/2)

Definition (word problem)

Let H be a finitely generated group, X be a finite alphabet, and p: ¥* — H
be a surjective monoid homomorphism. The word problem of H is
defined as WP,(H) := p~!(1y), where 1y € H is the identity element.

Although the word problem WP ,(H) depends on the choice of p,
we can ignore p in most cases:

Let C be a class of languages being closed under inverse homomorphism.
If WP,(H) € C for some p: ¥* — H, then so is for every p.

So we often write just WP(H).
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Word problem for groups (2/2)

Let H = Z2.

e LetY = {a",a,b",b7}, p(a®) = (£1,0), p(b*) = (0,41). Then
WP,(H) = {w € X* | w has same # of «* (resp. b*) and a~ (resp. b™) }

Satatbtbtatha a"a b (below left)

s Let ¥ = {z,y, 2}, p(x) = (1,0), p(y) = (0,1), p(z) = (—1,—1). Then
WP,(H) ={w e ¥* | whas same # of z,y, = }

S ryyrzz (below right)

b-‘r A A
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Theorem (Anisimov, 1972)

For a finitely generated group H, the following are equivalent:

1. The word problem WP (H) of H is a regular language.
2. H is a finite group.

Theorem (Muller-Schupp (1983) + Dunwoody (1985))

For a finitely generated group H, the following are equivalent:

1. The word problem WP(H) of H is a context-free language.
2. His avirtually free group (i.e., has a finite index free subgroup).
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G-automata (1/3) — Informal definition

Let G be a group. Roughly speaking,
G-automaton = usual NFA + (edge labels € G).

For each edge ¢ of a G-automaton:

Yu{e}
W

O
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Let G be a group. Roughly speaking,
G-automaton = usual NFA + (edge labels € G).

For each edge ¢ of a G-automaton:
Yu{e}
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G-automata (2/3) — Convention for graphs and paths

A graph is a 4-tuple I" = (V, E, s, t), where
* V is the vertex set,
» F is the edge set,
* s: F — V is a function assigning to every edge its source, and
* t: £ — V is a function assigning to every edge its target.

A pathina graph I' is a sequence ¢; - - - ¢, € E* of edges such that
t(e;) = s(e;41) for each i.

The source and the target of apathw =e¢;---¢, € E* (n > 1) are
defined as s(w) :=s(e;) and t(w) := t(e,), respectively.

A path w € E*inT'is closed if s(w) = t(w) (or w = ¢€).
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(GG-automata (3/3) — Formal definition

Definition ((non-deterministic) G-automata)

Let G be a group and X be a finite alphabet.

* A G-automaton is a 5-tuple A = (T, 4¢, U5, Dinit, Dter), Where
« I' = (V, E,s,t) is a finite graph,
* lg: E— Gand/lx: E— X U{e} are edge-labeling functions, and
* pmit, Pter € V' are initial vertex and terminal vertex, respectively.
(Note that (I, s, pinit, Prer) 1S @ usual NFA)
» Edge-labeling functions are naturally extended to /: £* — G and
ls: B — ¥*.
* Apath w € E*in T is an accepting path in A if
S(W) = Pinity  t(W) = Prer, Lla(w) = lg.
» The language L.(A) accepted by a G-automaton A is defined by

L(A) = {/x(w) € ¥* | wis an accepting path in A}.
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The language class defined by G-automata

Theorem (Kambites, 2009)

The class £(G) of languages accepted by some G-automata forms a
rational cone, i.e., it is closed under inverse homomorphism,
homomorphism, and intersection with a regular language.

In particular, whether a word problem WP ,(H) is accepted by a
G-automaton does not depend on the choice of p.

* For the trivial group {1}, £({1}) = REG. (regular languages)

* If F'is a free group of rank > 2, L(F') = CFL. (context-free languages)
(Chomsky—Schutzenberger (1963), Corson (2005), Kambites (2009))
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Re-interpretation of the known results

Theorem (Anisimov, 1972)

For a finitely generated group H, the following are equivalent:

1. The word problem WP (H) of H is accepted by a {1}-automaton.
2. H is afinite group (= virtually {1}).

Theorem (Muller=Schupp (1983) + Dunwoody (1985))

For a finitely generated group H, the following are equivalent:

1. The word problem WP (H) of H is accepted by a F'-automaton.
2. His avirtually free group (i.e., has a finite index free subgroup).

Gilman posed a “commutative analog” of Muller—Schupp theorem: what is
the class of groups whose word problem are accepted by Z"-automata?
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Elder-Kambites-Ostheimer Theorem

Theorem (Elder-Kambites-Ostheimer, 2008)
Let H be a finitely generated group.

If the word problem WP(H) of H is accepted by a Z"-automaton A,
then for some m < n, Z™ is a finite index subgroup of H.
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Elder-Kambites-Ostheimer Theorem

Theorem (Elder-Kambites-Ostheimer, 2008)

Let H be a finitely generated group.

If the word problem WP(H) of H is accepted by a Z"-automaton A,
then for some m < n, Z™ is a finite index subgroup of H.

However, their proof is somewhat complicated and:

* written in terms of geometric group theory, and
» depends on a deep theorem due to Gromov.

The rest of the talk, | give an elementary and purely combinatorial proof of
their theorem.
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Proof (0/4): Outline

Theorem (Y., 2023)

If the word problem WP ,(H) of a fin. gen. group H is accepted by a
G-automaton for an abelian group G, then there exists a surj. group hom.
f from a subgroup G, C G to a finite index subgroup Hy C H.

1. Show that there are only finitely many minimal accepting paths.

2. For each min. acc. path i and each vertex p, define a monoid M (u, p)
consisting of closed paths in A.

3. Show that each M (u,p) induces a surj. homomorphism
fup: G, p) = H(p,p) from G(p,p) € G onto H(u,p) C H.

4. Atleast one of H(u,p)’s has finite index in H by using the following:

Theorem (B. H. Neumann’s lemma)
Let H be a group, H.,...,H, C H be subgrps, and a,,by,...,a,,b, € H.

If H =J_, a;H;b;, then at least one of H,’s has finite index in H.
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Proof (1/4): Notation for (scattered) subword

Let X be a finite alphabet and u, v € ¥*.

uC v <= T,y € X* [ruy =v] (subword)
Juq, ..., u, €XF, lu= u; uy - Up,
ULl v <
Fvg, V1, ..., Uy € X |V = VU101 UV * * V1 URVp

(scattered subword)

The both relations C and C. are partial orders on >*.
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Proof (1/4): Minimal accepting paths

Definition
An accepting path a € E* is minimal if « is minimal with respect to C,.
among the accepting paths.

Theorem (Higman’s lemma)
The order C,. on E* is a well-quasi-order, i.e., for every infinite sequence
wi,ws, ... € E*, there are some ¢ < j such that w; T w;.

Corollary

There are only finitely many minimal accepting paths.

For every accepting path o € E*, there exists a minimal accepting path
i € E* such that u C,. a.
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Proof (2/4): Pumpable paths and the definition of A/ (y, p)

Definition

Letyu=e,---e, € E* (e; € E) be a minimal accepting path.
A path w € E* is pumpable in 1 if there is an accepting path
a = ey - - e, Jse poSUCh that w C o for some ;.

W

2
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Definition
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Proof (2/4): Pumpable paths and the definition of A/ (y, p)

Definition

Letyu=e,---e, € E* (e; € E) be a minimal accepting path.
A path w € E* is pumpable in 1 if there is an accepting path
a = ey - - e, Jse poSUCh that w C o for some ;.

In above definition, each «; is a closed path and
la(ag) + -+ + Lg(ay,) = 0g since G is commutative.
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Proof (2/4): Pumpable paths and the definition of A/ (y, p)

Definition
For each minimal accepting path ;. € E* and each vertex p € V, define
M (u,p) :={0 € E* | ois a closed path pumpable in ;i s.t. s(o) =p}
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Proof (2/4): Pumpable paths and the definition of A/ (y, p)

Definition
For each minimal accepting path ;. € E* and each vertex p € V, define
M (u,p) :={0 € E* | ois a closed path pumpable in ;i s.t. s(o) =p}

g
&
p
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Proof (2/4): M (., p) forms a monoid

Lemma
Each M (u, p) forms a monoid w.r.t. the concatenation.

Let 01,00 € M(u, p).
g1 09

w= ,EIOé: 7EIB:
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Proof (2/4): M (., p) forms a monoid

Lemma
Each M (u, p) forms a monoid w.r.t. the concatenation.

Let 01,00 € M(u, p).
g1 09

Thus o109 € M(p, p). O
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Proof (3/4): Construction of f, ,: G(u,p) — H(u,p)

Take a natural surj. monoid hom. p o ls =: ¢, ,: M(u,p) = p(ls(M(u,p))).
Then the function ¢, ,,: la(M (1, p)) = p(bs(M (1, p))) is well-defined:

Lemma

Let two paths w,w’ € E* be subwords of accepting paths s.t. s(w) = s(w’)
and t(w) = t(w'). Then lg(w) = lg(W') implies p(ls(w)) = p(ls(Ww")).

Defining G(u, p) := (ba(M (11, p))) € G, H(u, p) = (p(t=(M(n,p)))) C H,
we have a surjective group homomorphism f,,: G(u, p) = H(u, p). 20/25
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Proof (4/4): (H (1, p)),, Satisfy the hypo. of Neumann’s lem. (1)

Lemma

If 7 Csc 0 € M(u,p) and 7 is a closed path s.t. s(7) = p, then 7 € M (u,p).

Suppose

Since M (u,p) is a monoid, o2 € M (u, p).

NEEEIEEN
= 0
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Lemma
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H

Since M (u, p) is @ monoid, 0% € M (u,p).

Suppose

DU
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Proof (4/4): (H (1, p)),, Satisfy the hypo. of Neumann’s lem. (2)

Corollary
If w C o € M(p,p), then wiwws € M(u, p) for some wy,w, € E<IVI,
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Corollary
If w C o € M(p,p), then wiwws € M(u, p) for some wy,w, € E<IVI,

w

Wi
€ M(u,p)
W2

22/25



Proof (4/4): (H (1, p)),, Satisfy the hypo. of Neumann’s lem. (2)

H = J{h"H(p,p)hy" | pis amin. acc. path in A, p € V, hy, hy € p(2=IV1) }.

Let N := 1+ max{ || | p € E* is a min. acc. path }.

Let h = p(v) € H (v € X*). There is some v € ¥* such that p(v) = p(v)~L.
Since (vv)Y € WP,(H) = L(A), there is an acc. path a = wy&; - - wywn
such that /s (w;) = v, fx(w;) = .

Taking a min. acc. path = e; - - - e, Cy. a, We have a = agperay - - - e,
(o € E¥).

By the definition of IV, some w; is “disjoint” from g, i.e., w; T «; for some j.
Thus we have o,w;of € M(u, p) (p = s(a;)) for some o}, o/ € E<IV, and

h = p(bs(wr) € p(Es () H (1, p)p(L(a)) " O
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