Word problem for groups and G-automata

Takao Yuyama Korea Logic Day 2024 (on Zoom), Jan. 12, 2024, 10:30–11:00 (UTC+9)

Research Institute for Mathematical Sciences, Kyoto University, Japan

Introduction

In group theory, a group is often given by a finite presentation, such as $G = \langle x_1, \dots, x_n \mid r_1, \dots, r_m \rangle.$

Examples

- $\mathbb{Z}^2 = \langle x, y \mid xyx^{-1}y^{-1} \rangle$ (the free abelian group of rank 2),
- $S_3 = \langle x, y \mid x^2, y^2, (xy)^3 \rangle$ (the symmetric group of degree 3, order 6).

For a given finite presentation of a group H, the word problem of H (w.r.t. the presentation) is the following decision problem:

Word problem of *H* (Dehn, 1911)

Input: two words u, v on the generators

Question: does u = v in H? ($\iff u^{-1}v = 1_H$)

1. Word problem for groups

2. G-automata

3. Simplified proof of EKO's theorem

Definition (word problem)

Let *H* be a finitely generated group, Σ be a finite alphabet, and $\rho: \Sigma^* \to H$ be a **surjective** monoid homomorphism. The word problem of *H* is defined as $WP_{\rho}(H) := \rho^{-1}(1_H)$, where $1_H \in H$ is the identity element.

Although the word problem $WP_{\rho}(H)$ depends on the choice of ρ , we can ignore ρ in most cases:

Remark

Let \mathcal{C} be a class of languages being closed under inverse homomorphism. If $WP_{\rho}(H) \in \mathcal{C}$ for **some** $\rho \colon \Sigma^* \to H$, then so is for **every** ρ .

So we often write just WP(H).

Definition (word problem)

Let *H* be a finitely generated group, Σ be a finite alphabet, and $\rho: \Sigma^* \to H$ be a **surjective** monoid homomorphism. The word problem of *H* is defined as $WP_{\rho}(H) := \rho^{-1}(1_H)$, where $1_H \in H$ is the identity element.

Although the word problem ${\rm WP}_\rho(H)$ depends on the choice of $\rho,$ we can ignore ρ in most cases:

Remark

Let \mathcal{C} be a class of languages being closed under inverse homomorphism. If $WP_{\rho}(H) \in \mathcal{C}$ for **some** $\rho \colon \Sigma^* \to H$, then so is for **every** ρ .

So we often write just WP(H).

Word problem for groups (2/2)

Examples

Let $H = \mathbb{Z}^2$.

- Let Σ = {a⁺, a⁻, b⁺, b⁻}, ρ(a[±]) = (±1, 0), ρ(b[±]) = (0, ±1). Then WP_ρ(H) = { w ∈ Σ* | w has same # of a⁺ (resp. b⁺) and a⁻ (resp. b⁻) } ∋ a⁺a⁺b⁺b⁺a⁺b⁻a⁻a⁻a⁻b⁻ (below left)
 Let Σ = {x, y, z}, ρ(x) = (1, 0), ρ(y) = (0, 1), ρ(z) = (-1, -1). Then
- Let $\Sigma = \{x, y, z\}, \rho(x) = (1, 0), \rho(y) = (0, 1), \rho(z) = (-1, -1).$ If $WP_{\rho}(H) = \{w \in \Sigma^* \mid w \text{ has same \# of } x, y, z\}$

i i = xyyxzz (below right)

Theorem (Anīsīmov, 1972)

For a finitely generated group H, the following are equivalent:

- 1. The word problem WP(H) of H is a regular language.
- 2. H is a finite group.

Theorem (Muller–Schupp (1983) + Dunwoody (1985))

For a finitely generated group *H*, the following are equivalent:

- 1. The word problem WP(H) of H is a context-free language.
- 2. H is a virtually free group (i.e., has a finite index free subgroup).

1. Word problem for groups

2. G-automata

3. Simplified proof of EKO's theorem

Let G be a group. Roughly speaking, G-automaton = usual NFA + (edge labels \in G).

For each edge e of a G-automaton:

Let G be a group. Roughly speaking, G-automaton = usual NFA + (edge labels \in G).

For each edge e of a G-automaton:

G-automata (2/3) — Convention for graphs and paths

- A graph is a 4-tuple $\Gamma = (V, E, s, t)$, where
 - *V* is the vertex set,
 - E is the edge set,
 - s: $E \rightarrow V$ is a function assigning to every edge its source, and
 - $t: E \to V$ is a function assigning to every edge its target.
- A path in a graph Γ is a sequence $e_1 \cdots e_n \in E^*$ of edges such that $t(e_i) = s(e_{i+1})$ for each i.
- The source and the target of a path $\omega = e_1 \cdots e_n \in E^*$ $(n \ge 1)$ are defined as $s(\omega) := s(e_1)$ and $t(\omega) := t(e_n)$, respectively.
- A path $\omega \in E^*$ in Γ is closed if $s(\omega) = t(\omega)$ (or $\omega = \varepsilon$).

G-automata (3/3) — Formal definition

Definition ((non-deterministic) *G***-automata)**

Let G be a group and Σ be a finite alphabet.

- A *G*-automaton is a 5-tuple $A = (\Gamma, \ell_G, \ell_{\Sigma}, p_{\text{init}}, p_{\text{ter}})$, where
 - $\Gamma = (V, E, s, t)$ is a finite graph,
 - $\ell_G \colon E \to G$ and $\ell_\Sigma \colon E \to \Sigma \cup \{\varepsilon\}$ are edge-labeling functions, and
 - + $p_{\mathrm{init}}, p_{\mathrm{ter}} \in V$ are initial vertex and terminal vertex, respectively.

(Note that $(\Gamma,\ell_{\Sigma},p_{\mathrm{init}},p_{\mathrm{ter}})$ is a usual NFA)

- Edge-labeling functions are naturally extended to $\ell_G \colon E^* \to G$ and $\ell_{\Sigma} \colon E^* \to \Sigma^*$.
- A path $\omega \in E^*$ in Γ is an accepting path in A if

$$\mathsf{s}(\omega) = p_{\text{init}}, \quad \mathsf{t}(\omega) = p_{\text{ter}}, \quad \boldsymbol{\ell_G}(\omega) = \mathbf{1}_G.$$

• The language L(A) accepted by a *G*-automaton *A* is defined by $L(A) = \{ \ell_{\Sigma}(\omega) \in \Sigma^* \mid \omega \text{ is an accepting path in } A \}.$

Theorem (Kambites, 2009)

The class $\mathcal{L}(G)$ of languages accepted by some *G*-automata forms a rational cone, i.e., it is closed under inverse homomorphism, homomorphism, and intersection with a regular language. In particular, whether a word problem $WP_{\rho}(H)$ is accepted by a *G*-automaton does not depend on the choice of ρ .

Examples

- For the trivial group $\{1\}$, $\mathcal{L}(\{1\}) = \mathsf{REG.}$ (regular languages)
- If F is a free group of rank ≥ 2, L(F) = CFL. (context-free languages) (Chomsky–Schützenberger (1963), Corson (2005), Kambites (2009))

Re-interpretation of the known results

Theorem (Anīsīmov, 1972)

For a finitely generated group H, the following are equivalent:

- 1. The word problem WP(H) of H is accepted by a $\{1\}$ -automaton.
- 2. *H* is a finite group (= virtually $\{1\}$).

Theorem (Muller–Schupp (1983) + Dunwoody (1985))

For a finitely generated group H, the following are equivalent:

- 1. The word problem WP(H) of H is accepted by a F-automaton.
- 2. *H* is a virtually free group (i.e., has a finite index free subgroup).

Gilman posed a "commutative analog" of Muller–Schupp theorem: what is the class of groups whose word problem are accepted by \mathbb{Z}^n -automata?

Theorem (Elder-Kambites-Ostheimer, 2008)

Let *H* be a finitely generated group. If the word problem WP(H) of *H* is accepted by a \mathbb{Z}^n -automaton *A*, then for some $m \leq n$, \mathbb{Z}^m is a finite index subgroup of *H*.

However, their proof is somewhat complicated and:

- written in terms of geometric group theory, and
- depends on a deep theorem due to Gromov.

The rest of the talk, I give an elementary and purely combinatorial proof of their theorem.

Theorem (Elder-Kambites-Ostheimer, 2008)

Let *H* be a finitely generated group. If the word problem WP(H) of *H* is accepted by a \mathbb{Z}^n -automaton *A*, then for some $m \leq n$, \mathbb{Z}^m is a finite index subgroup of *H*.

However, their proof is somewhat complicated and:

- · written in terms of geometric group theory, and
- depends on a deep theorem due to Gromov.

The rest of the talk, I give an elementary and purely combinatorial proof of their theorem.

1. Word problem for groups

2. G-automata

3. Simplified proof of EKO's theorem

Proof (0/4): Outline

Theorem (Y., 2023)

If the word problem $WP_{\rho}(H)$ of a fin. gen. group H is accepted by a G-automaton for an abelian group G, then there exists a surj. group hom. f from a subgroup $G_0 \subseteq G$ to a finite index subgroup $H_0 \subseteq H$.

- 1. Show that there are only finitely many minimal accepting paths.
- 2. For each min. acc. path μ and each vertex p, define a monoid $M(\mu, p)$ consisting of closed paths in A.
- 3. Show that each $M(\mu, p)$ induces a surj. homomorphism $f_{\mu,p}: G(\mu, p) \to H(\mu, p)$ from $G(\mu, p) \subseteq G$ onto $H(\mu, p) \subseteq H$.
- 4. At least one of $H(\mu, p)$'s has finite index in H by using the following:

Theorem (B. H. Neumann's lemma)

Let *H* be a group, $H_1, \ldots, H_n \subseteq H$ be subgrips, and $a_1, b_1, \ldots, a_n, b_n \in H$. If $H = \bigcup_{i=1}^n a_i H_i b_i$, then at least one of H_i 's has finite index in *H*. Let Σ be a finite alphabet and $u, v \in \Sigma^*$.

$$u \sqsubseteq v \iff \exists x, y \in \Sigma^* [xuy = v] \quad \text{(subword)}$$
$$u \sqsubseteq_{sc} v \iff \exists u_1, \dots, u_n \in \Sigma^*, \\ \exists v_0, v_1, \dots, v_n \in \Sigma^* \begin{bmatrix} u = u_1 & u_2 & \cdots & u_n, \\ v = v_0 u_1 v_1 u_2 v_2 \cdots v_{n-1} u_n v_n \end{bmatrix}$$
$$(\text{scattered subword})$$

Remark

The both relations \sqsubseteq and \sqsubseteq_{sc} are partial orders on Σ^* .

Definition

An accepting path $\alpha \in E^*$ is minimal if α is minimal with respect to \sqsubseteq_{sc} among the accepting paths.

Theorem (Higman's lemma)

The order \sqsubseteq_{sc} on E^* is a well-quasi-order, i.e., for every infinite sequence $\omega_1, \omega_2, \ldots \in E^*$, there are some i < j such that $\omega_i \sqsubseteq_{sc} \omega_j$.

Corollary

There are only finitely many minimal accepting paths.

For every accepting path $\alpha \in E^*$, there exists a minimal accepting path $\mu \in E^*$ such that $\mu \sqsubseteq_{sc} \alpha$.

Definition

Let $\mu = e_1 \cdots e_n \in E^*$ $(e_i \in E)$ be a minimal accepting path. A path $\omega \in E^*$ is pumpable in μ if there is an accepting path $\alpha = \alpha_0 e_1 \alpha_1 \cdots e_n \alpha_n \sqsupseteq_{sc} \mu$ such that $\omega \sqsubseteq \alpha_j$ for some j.

Remark

In above definition, each α_i is a closed path and $\ell_G(\alpha_0) + \cdots + \ell_G(\alpha_n) = 0_G$ since *G* is commutative

Definition

Let $\mu = e_1 \cdots e_n \in E^*$ $(e_i \in E)$ be a minimal accepting path. A path $\omega \in E^*$ is pumpable in μ if there is an accepting path $\alpha = \alpha_0 e_1 \alpha_1 \cdots e_n \alpha_n \sqsupseteq_{sc} \mu$ such that $\omega \sqsubseteq \alpha_j$ for some j.

Remark

In above definition, each α_i is a closed path and $\ell_G(\alpha_0) + \cdots + \ell_G(\alpha_n) = 0_G$ since *G* is commutative.

Definition

Let $\mu = e_1 \cdots e_n \in E^*$ $(e_i \in E)$ be a minimal accepting path. A path $\omega \in E^*$ is pumpable in μ if there is an accepting path $\alpha = \alpha_0 e_1 \alpha_1 \cdots e_n \alpha_n \sqsupseteq_{sc} \mu$ such that $\omega \sqsubseteq \alpha_j$ for some j.

Remark

In above definition, each α_i is a closed path and $\ell_G(\alpha_0) + \cdots + \ell_G(\alpha_n) = 0_G$ since *G* is commutative.

Definition

For each minimal accepting path $\mu \in E^*$ and each vertex $p \in V$, define $M(\mu, p) := \{ \sigma \in E^* \mid \sigma \text{ is a closed path pumpable in } \mu \text{ s.t. } s(\sigma) = p \}$

Definition

For each minimal accepting path $\mu \in E^*$ and each vertex $p \in V$, define $M(\mu, p) := \{ \sigma \in E^* \mid \sigma \text{ is a closed path pumpable in } \mu \text{ s.t. } s(\sigma) = p \}$

Proof (2/4): $M(\mu, p)$ forms a monoid

Lemma

Each $M(\mu, p)$ forms a monoid w.r.t. the concatenation.

Proof (2/4): $M(\mu, p)$ forms a monoid

Lemma

Each $M(\mu, p)$ forms a monoid w.r.t. the concatenation.

Proof (2/4): $M(\mu, p)$ forms a monoid

Lemma

Each $M(\mu, p)$ forms a monoid w.r.t. the concatenation.

Take a natural surj. monoid hom. $\rho \circ \ell_{\Sigma} =: \varphi_{\mu,p} \colon M(\mu, p) \to \rho(\ell_{\Sigma}(M(\mu, p))).$ Then the function $\bar{\varphi}_{\mu,p} \colon \ell_G(M(\mu, p)) \to \rho(\ell_{\Sigma}(M(\mu, p)))$ is well-defined:

Lemma

Let two paths $\omega, \omega' \in E^*$ be subwords of accepting paths s.t. $s(\omega) = s(\omega')$ and $t(\omega) = t(\omega')$. Then $\ell_G(\omega) = \ell_G(\omega')$ implies $\rho(\ell_{\Sigma}(\omega)) = \rho(\ell_{\Sigma}(\omega'))$.

Proof.

Defining $G(\mu, p) := \langle \ell_G(M(\mu, p)) \rangle \subseteq G, H(\mu, p) := \langle \rho(\ell_{\Sigma}(M(\mu, p))) \rangle \subseteq H$, we have a surjective group homomorphism $f_{\mu,p} : G(\mu, p) \to H(\mu, p)$.

Take a natural surj. monoid hom. $\rho \circ \ell_{\Sigma} =: \varphi_{\mu,p} : M(\mu, p) \to \rho(\ell_{\Sigma}(M(\mu, p))).$ Then the function $\bar{\varphi}_{\mu,p} : \ell_G(M(\mu, p)) \to \rho(\ell_{\Sigma}(M(\mu, p)))$ is well-defined:

Lemma

Let two paths $\omega, \omega' \in E^*$ be subwords of accepting paths s.t. $s(\omega) = s(\omega')$ and $t(\omega) = t(\omega')$. Then $\ell_G(\omega) = \ell_G(\omega')$ implies $\rho(\ell_{\Sigma}(\omega)) = \rho(\ell_{\Sigma}(\omega'))$.

Defining $G(\mu, p) := \langle \ell_G(M(\mu, p)) \rangle \subseteq G, H(\mu, p) := \langle \rho(\ell_{\Sigma}(M(\mu, p))) \rangle \subseteq H$, we have a surjective group homomorphism $f_{\mu,p} : G(\mu, p) \to H(\mu, p)$.

20/25

Take a natural surj. monoid hom. $\rho \circ \ell_{\Sigma} =: \varphi_{\mu,p} : M(\mu, p) \to \rho(\ell_{\Sigma}(M(\mu, p))).$ Then the function $\bar{\varphi}_{\mu,p} : \ell_G(M(\mu, p)) \to \rho(\ell_{\Sigma}(M(\mu, p)))$ is well-defined:

Lemma

Let two paths $\omega, \omega' \in E^*$ be subwords of accepting paths s.t. $s(\omega) = s(\omega')$ and $t(\omega) = t(\omega')$. Then $\ell_G(\omega) = \ell_G(\omega')$ implies $\rho(\ell_{\Sigma}(\omega)) = \rho(\ell_{\Sigma}(\omega'))$.

Proof.

Defining $G(\mu, p) := \langle \ell_G(M(\mu, p)) \rangle \subseteq G, H(\mu, p) := \langle \rho(\ell_{\Sigma}(M(\mu, p))) \rangle \subseteq H$, we have a surjective group homomorphism $f_{\mu,p} \colon G(\mu, p) \to H(\mu, p)$.

20/25

Take a natural surj. monoid hom. $\rho \circ \ell_{\Sigma} =: \varphi_{\mu,p} : M(\mu, p) \to \rho(\ell_{\Sigma}(M(\mu, p))).$ Then the function $\bar{\varphi}_{\mu,p} : \ell_G(M(\mu, p)) \to \rho(\ell_{\Sigma}(M(\mu, p)))$ is well-defined:

Lemma

Let two paths $\omega, \omega' \in E^*$ be subwords of accepting paths s.t. $s(\omega) = s(\omega')$ and $t(\omega) = t(\omega')$. Then $\ell_G(\omega) = \ell_G(\omega')$ implies $\rho(\ell_{\Sigma}(\omega)) = \rho(\ell_{\Sigma}(\omega'))$.

Proof.

$$\ell_G(\to \smile \to) = 0_G$$

Defining $G(\mu, p) := \langle \ell_G(M(\mu, p)) \rangle \subseteq G, H(\mu, p) := \langle \rho(\ell_{\Sigma}(M(\mu, p))) \rangle \subseteq H$, we have a surjective group homomorphism $f_{\mu,p} : G(\mu, p) \to H(\mu, p)$.

Take a natural surj. monoid hom. $\rho \circ \ell_{\Sigma} =: \varphi_{\mu,p} \colon M(\mu, p) \to \rho(\ell_{\Sigma}(M(\mu, p))).$ Then the function $\bar{\varphi}_{\mu,p} \colon \ell_G(M(\mu, p)) \to \rho(\ell_{\Sigma}(M(\mu, p)))$ is well-defined:

Lemma

Let two paths $\omega, \omega' \in E^*$ be subwords of accepting paths s.t. $s(\omega) = s(\omega')$ and $t(\omega) = t(\omega')$. Then $\ell_G(\omega) = \ell_G(\omega')$ implies $\rho(\ell_{\Sigma}(\omega)) = \rho(\ell_{\Sigma}(\omega'))$.

Proof.

Defining $G(\mu, p) := \langle \ell_G(M(\mu, p)) \rangle \subseteq G, H(\mu, p) := \langle \rho(\ell_{\Sigma}(M(\mu, p))) \rangle \subseteq H$, we have a surjective group homomorphism $f_{\mu,p} \colon G(\mu, p) \to H(\mu, p)$.

Take a natural surj. monoid hom. $\rho \circ \ell_{\Sigma} =: \varphi_{\mu,p} \colon M(\mu, p) \to \rho(\ell_{\Sigma}(M(\mu, p))).$ Then the function $\bar{\varphi}_{\mu,p} \colon \ell_G(M(\mu, p)) \to \rho(\ell_{\Sigma}(M(\mu, p)))$ is well-defined:

Lemma

Let two paths $\omega, \omega' \in E^*$ be subwords of accepting paths s.t. $s(\omega) = s(\omega')$ and $t(\omega) = t(\omega')$. Then $\ell_G(\omega) = \ell_G(\omega')$ implies $\rho(\ell_{\Sigma}(\omega)) = \rho(\ell_{\Sigma}(\omega'))$.

Proof.

Defining $G(\mu, p) := \langle \ell_G(M(\mu, p)) \rangle \subseteq G, H(\mu, p) := \langle \rho(\ell_{\Sigma}(M(\mu, p))) \rangle \subseteq H$, we have a surjective group homomorphism $f_{\mu,p} : G(\mu, p) \to H(\mu, p)$.

Proof (4/4): $(H(\mu, p))_{\mu,p}$ satisfy the hypo. of Neumann's lem. (1)

Lemma

If $\tau \sqsubseteq_{sc} \sigma \in M(\mu, p)$ and τ is a closed path s.t. $s(\tau) = p$, then $\tau \in M(\mu, p)$.

Proof (4/4): $(H(\mu, p))_{\mu,p}$ satisfy the hypo. of Neumann's lem. (1)

Lemma

If $\tau \sqsubseteq_{sc} \sigma \in M(\mu, p)$ and τ is a closed path s.t. $s(\tau) = p$, then $\tau \in M(\mu, p)$.

Proof (4/4): $(H(\mu, p))_{\mu,p}$ satisfy the hypo. of Neumann's lem. (2)

Corollary

If $\omega \sqsubseteq \sigma \in M(\mu, p)$, then $\omega_1 \omega \omega_2 \in M(\mu, p)$ for some $\omega_1, \omega_2 \in E^{\langle |V|}$.

Proof (4/4): $(H(\mu, p))_{\mu,p}$ satisfy the hypo. of Neumann's lem. (2)

Corollary

If $\omega \sqsubseteq \sigma \in M(\mu, p)$, then $\omega_1 \omega \omega_2 \in M(\mu, p)$ for some $\omega_1, \omega_2 \in E^{\langle |V|}$.

Proof (4/4): $(H(\mu, p))_{\mu,p}$ satisfy the hypo. of Neumann's lem. (2)

Proposition

$$H = \bigcup \{ h_1^{-1} H(\mu, p) h_2^{-1} \mid \mu \text{ is a min. acc. path in } A, p \in V, h_1, h_2 \in \rho(\Sigma^{<|V|}) \}.$$

Proof.

Let $N := 1 + \max\{ |\mu| \mid \mu \in E^* \text{ is a min. acc. path } \}.$ Let $h = \rho(v) \in H$ ($v \in \Sigma^*$). There is some $\bar{v} \in \Sigma^*$ such that $\rho(\bar{v}) = \rho(v)^{-1}$. Since $(v\bar{v})^N \in WP_o(H) = L(A)$, there is an acc. path $\alpha = \omega_1 \bar{\omega}_1 \cdots \omega_N \bar{\omega}_N$ such that $\ell_{\Sigma}(\omega_i) = v, \ell_{\Sigma}(\bar{\omega}_i) = \bar{v}.$ Taking a min. acc. path $\mu = e_1 \cdots e_n \sqsubset_{sc} \alpha$, we have $\alpha = \alpha_0 e_1 \alpha_1 \cdots e_n \alpha_n$ $(\alpha_i \in E^*).$ By the definition of N, some ω_i is "disjoint" from μ , i.e., $\omega_i \sqsubseteq \alpha_j$ for some j. Thus we have $\alpha'_i \omega_i \alpha''_i \in M(\mu, p)$ $(p = s(\alpha_i))$ for some $\alpha'_i, \alpha''_i \in E^{<|V|}$, and $h = \rho(\ell_{\Sigma}(\omega_i)) \in \rho(\ell_{\Sigma}(\alpha'_i))^{-1} H(\mu, p) \rho(\ell_{\Sigma}(\alpha''_i))^{-1}.$

- [Anī72] A. V. Anīsīmov, Certain algorithmic questions for groups and context-free languages, Kibernetika (Kiev) 2 (1972), 4–11 (Russian, with English summary). MR312774
- [CS63] N. Chomsky and M. P. Schützenberger, *The algebraic theory of context-free languages*, Computer programming and formal systems, 1963, pp. 118–161.
- [Cor05] J. M. Corson, Extended finite automata and word problems, Internat. J. Algebra Comput. 15 (2005), no. 3, 455–466, DOI 10.1142/S0218196705002360.
- [Dun85] M. J. Dunwoody, *The accessibility of finitely presented groups*, Invent. Math. **81** (1985), no. 3, 449–457, DOI 10.1007/BF01388581. MR807066
- [EKO08] M. Elder, M. Kambites, and G. Ostheimer, On groups and counter automata, Internat. J. Algebra Comput. 18 (2008), no. 8, 1345–1364, DOI 10.1142/S0218196708004901.

- [Kam09] M. Kambites, *Formal languages and groups as memory*, Comm. Algebra **37** (2009), no. 1, 193–208, DOI 10.1080/00927870802243580.
 - [MS83] D. E. Muller and P. E. Schupp, Groups, the theory of ends, and context-free languages, J. Comput. System Sci. 26 (1983), no. 3, 295–310, DOI 10.1016/0022-0000(83)90003-X. MR710250
- [Yuy23] T. Yuyama, *Groups Whose Word Problems Are Accepted by Abelian G-Automata*, Developments in Language Theory, 2023, pp. 246–257.