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Introduction

In group theory, a group is often given by a finite presentation, such as
G = ⟨ x1, . . . , xn | r1, . . . , rm ⟩.

Examples

• Z2 = ⟨ x, y | xyx−1y−1 ⟩ (the free abelian group of rank 2),

• S3 = ⟨ x, y | x2, y2, (xy)3 ⟩ (the symmetric group of degree 3, order 6).

For a given finite presentation of a group H, the word problem of H (w.r.t.
the presentation) is the following decision problem:

Word problem of H (Dehn, 1911)

Input: two words u, v on the generators

Question: does u = v in H? (⇐⇒ u−1v = 1H)
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Word problem for groups (1/2)

Definition (word problem)
Let H be a finitely generated group, Σ be a finite alphabet, and ρ : Σ∗ → H

be a surjective monoid homomorphism. The word problem of H is
defined as WPρ(H) := ρ−1(1H), where 1H ∈ H is the identity element.

Although the word problem WPρ(H) depends on the choice of ρ,
we can ignore ρ in most cases:

Remark
Let C be a class of languages being closed under inverse homomorphism.
If WPρ(H) ∈ C for some ρ : Σ∗ → H, then so is for every ρ.

So we often write just WP(H).
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Word problem for groups (2/2)
Examples
Let H = Z2.

• Let Σ = {a+, a−, b+, b−}, ρ(a±) = (±1, 0), ρ(b±) = (0,±1). Then
WPρ(H) = {w ∈ Σ∗ | w has same # of a+ (resp. b+) and a− (resp. b−) }

∋ a+a+b+b+a+b−a−a−a−b− (below left)
• Let Σ = {x, y, z}, ρ(x) = (1, 0), ρ(y) = (0, 1), ρ(z) = (−1,−1). Then
WPρ(H) = {w ∈ Σ∗ | w has same # of x, y, z }

∋ xyyxzz (below right)
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Known results

Theorem (Anı̄sı̄mov, 1972)
For a finitely generated group H, the following are equivalent:

1. The word problem WP(H) of H is a regular language.

2. H is a finite group.

Theorem (Muller–Schupp (1983) + Dunwoody (1985))
For a finitely generated group H, the following are equivalent:

1. The word problem WP(H) of H is a context-free language.

2. H is a virtually free group (i.e., has a finite index free subgroup).
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G-automata (1/3) — Informal definition

Let G be a group. Roughly speaking,
G-automaton = usual NFA + (edge labels ∈ G).

For each edge e of a G-automaton:

p q
a

∈

Σ ∪ {ε}

g∈
G

a

∈

Σ ∪ {ε}
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G-automata (2/3) — Convention for graphs and paths

• A graph is a 4-tuple Γ = (V,E, s, t), where
• V is the vertex set,
• E is the edge set,
• s : E → V is a function assigning to every edge its source, and
• t : E → V is a function assigning to every edge its target.

• A path in a graph Γ is a sequence e1 · · · en ∈ E∗ of edges such that
t(ei) = s(ei+1) for each i.

• The source and the target of a path ω = e1 · · · en ∈ E∗ (n ≥ 1) are
defined as s(ω) := s(e1) and t(ω) := t(en), respectively.

• A path ω ∈ E∗ in Γ is closed if s(ω) = t(ω) (or ω = ε).
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G-automata (3/3) — Formal definition
Definition ((non-deterministic) G-automata)
Let G be a group and Σ be a finite alphabet.

• A G-automaton is a 5-tuple A = (Γ, ℓG, ℓΣ, pinit, pter), where
• Γ = (V,E, s, t) is a finite graph,
• ℓG : E → G and ℓΣ : E → Σ ∪ {ε} are edge-labeling functions, and
• pinit, pter ∈ V are initial vertex and terminal vertex, respectively.

(Note that (Γ, ℓΣ, pinit, pter) is a usual NFA)

• Edge-labeling functions are naturally extended to ℓG : E
∗ → G and

ℓΣ : E
∗ → Σ∗.

• A path ω ∈ E∗ in Γ is an accepting path in A if
s(ω) = pinit, t(ω) = pter, ℓG(ω) = 1G.

• The language L(A) accepted by a G-automaton A is defined by
L(A) = { ℓΣ(ω) ∈ Σ∗ | ω is an accepting path in A }.

9/25



The language class defined by G-automata

Theorem (Kambites, 2009)
The class L(G) of languages accepted by some G-automata forms a
rational cone, i.e., it is closed under inverse homomorphism,
homomorphism, and intersection with a regular language.
In particular, whether a word problem WPρ(H) is accepted by a
G-automaton does not depend on the choice of ρ.

Examples

• For the trivial group {1}, L({1}) = REG. (regular languages)

• If F is a free group of rank ≥ 2, L(F ) = CFL. (context-free languages)
(Chomsky–Schützenberger (1963), Corson (2005), Kambites (2009))
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Re-interpretation of the known results
Theorem (Anı̄sı̄mov, 1972)
For a finitely generated group H, the following are equivalent:

1. The word problem WP(H) of H is accepted by a {1}-automaton.

2. H is a finite group (= virtually {1}).

Theorem (Muller–Schupp (1983) + Dunwoody (1985))
For a finitely generated group H, the following are equivalent:

1. The word problem WP(H) of H is accepted by a F -automaton.

2. H is a virtually free group (i.e., has a finite index free subgroup).

Gilman posed a “commutative analog” of Muller–Schupp theorem: what is
the class of groups whose word problem are accepted by Zn-automata?
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Elder-Kambites-Ostheimer Theorem

Theorem (Elder-Kambites-Ostheimer, 2008)
Let H be a finitely generated group.
If the word problem WP(H) of H is accepted by a Zn-automaton A,
then for some m ≤ n, Zm is a finite index subgroup of H.

However, their proof is somewhat complicated and:

• written in terms of geometric group theory, and

• depends on a deep theorem due to Gromov.

The rest of the talk, I give an elementary and purely combinatorial proof of
their theorem.
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Proof (0/4): Outline
Theorem (Y., 2023)
If the word problem WPρ(H) of a fin. gen. group H is accepted by a
G-automaton for an abelian group G, then there exists a surj. group hom.
f from a subgroup G0 ⊆ G to a finite index subgroup H0 ⊆ H.

1. Show that there are only finitely many minimal accepting paths.
2. For each min. acc. path µ and each vertex p, define a monoid M(µ, p)

consisting of closed paths in A.
3. Show that each M(µ, p) induces a surj. homomorphism

fµ,p : G(µ, p) → H(µ, p) from G(µ, p) ⊆ G onto H(µ, p) ⊆ H.
4. At least one of H(µ, p)’s has finite index in H by using the following:

Theorem (B. H. Neumann’s lemma)
Let H be a group, H1, . . . , Hn ⊆ H be subgr’ps, and a1, b1, . . . , an, bn ∈ H.
If H =

∪n
i=1 aiHibi, then at least one of Hi’s has finite index in H.
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Proof (1/4): Notation for (scattered) subword

Let Σ be a finite alphabet and u, v ∈ Σ∗.
u ⊑ v :⇐⇒ ∃x, y ∈ Σ∗ [xuy = v] (subword)

u ⊑sc v :⇐⇒
∃u1, . . . , un ∈ Σ∗,

∃v0, v1, . . . , vn ∈ Σ∗

[
u = u1 u2 · · · un,

v = v0u1v1u2v2 · · ·vn−1unvn

]
(scattered subword)

Remark
The both relations ⊑ and ⊑sc are partial orders on Σ∗.
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Proof (1/4): Minimal accepting paths

Definition
An accepting path α ∈ E∗ is minimal if α is minimal with respect to ⊑sc

among the accepting paths.

Theorem (Higman’s lemma)
The order ⊑sc on E∗ is a well-quasi-order, i.e., for every infinite sequence
ω1, ω2, . . . ∈ E∗, there are some i < j such that ωi ⊑sc ωj.

Corollary
There are only finitely many minimal accepting paths.
For every accepting path α ∈ E∗, there exists a minimal accepting path
µ ∈ E∗ such that µ ⊑sc α.
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Proof (2/4): Pumpable paths and the definition of M(µ, p)

Definition
Let µ = e1 · · · en ∈ E∗ (ei ∈ E) be a minimal accepting path.
A path ω ∈ E∗ is pumpable in µ if there is an accepting path
α = α0e1α1 · · · enαn ⊒sc µ such that ω ⊑ αj for some j.

µ

ω

µ

α1
αj αn−1

ω

Remark
In above definition, each αi is a closed path and
ℓG(α0) + · · ·+ ℓG(αn) = 0G since G is commutative.
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Proof (2/4): Pumpable paths and the definition of M(µ, p)

Definition
For each minimal accepting path µ ∈ E∗ and each vertex p ∈ V , define

M(µ, p) := {σ ∈ E∗ | σ is a closed path pumpable in µ s.t. s(σ) = p }

µ

p

σ

µ

p

α1

σ

αj

αn−1
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Proof (2/4): M(µ, p) forms a monoid

Lemma
Each M(µ, p) forms a monoid w.r.t. the concatenation.

Proof.
Let σ1, σ2 ∈ M(µ, p).

µ =


, ∃α =


σ1

, ∃β =


σ2



⇝ γ =


 ⇝ γ′ =




Thus σ1σ2 ∈ M(µ, p).
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Proof (3/4): Construction of fµ,p : G(µ, p) → H(µ, p)

Take a natural surj. monoid hom. ρ ◦ ℓΣ =: φµ,p : M(µ, p) → ρ(ℓΣ(M(µ, p))).
Then the function φ̄µ,p : ℓG(M(µ, p)) → ρ(ℓΣ(M(µ, p))) is well-defined:

Lemma
Let two paths ω, ω′ ∈ E∗ be subwords of accepting paths s.t. s(ω) = s(ω′)

and t(ω) = t(ω′). Then ℓG(ω) = ℓG(ω
′) implies ρ(ℓΣ(ω)) = ρ(ℓΣ(ω

′)).

Proof.

ω

ω

ω′

ω′

pinit

pter

ℓG(→↷→) = 0G

ℓΣ(→↷→) ∈ L(A) = WP(H)

⇝ ρ(ℓΣ(→↷→)) = 1H .

ℓG(→ ↷ →) = 0G

⇝ ℓΣ(→ ↷ →) ∈ L(A) = WP(H)

ρ(ℓΣ(→ ↷ →)) = 1H .

⇝ ρ(ℓΣ(→↷→)) = 1H = ρ(ℓΣ(→ ↷ →)) ⇝ ρ(ℓΣ(
ω↷)) = ρ(ℓΣ(

↷
ω′
)).

Defining G(µ, p) := ⟨ℓG(M(µ, p))⟩ ⊆ G,H(µ, p) := ⟨ρ(ℓΣ(M(µ, p)))⟩ ⊆ H,
we have a surjective group homomorphism fµ,p : G(µ, p) → H(µ, p). 20/25
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Proof (4/4): (H(µ, p))µ,p satisfy the hypo. of Neumann’s lem. (1)
Lemma
If τ ⊑sc σ ∈ M(µ, p) and τ is a closed path s.t. s(τ) = p, then τ ∈ M(µ, p).

Proof.
Suppose

σ =


, τ =




Since M(µ, p) is a monoid, σ2 ∈ M(µ, p).

σ2 =


 ·
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Proof (4/4): (H(µ, p))µ,p satisfy the hypo. of Neumann’s lem. (2)

Corollary

If ω ⊑ σ ∈ M(µ, p), then ω1ωω2 ∈ M(µ, p) for some ω1, ω2 ∈ E<|V |.

Proof.

x

x

x

σ

ω

∈ M(µ, p)
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Proof (4/4): (H(µ, p))µ,p satisfy the hypo. of Neumann’s lem. (2)
Proposition

H =
∪

{h−1
1 H(µ, p)h−1

2 | µ is a min. acc. path in A, p ∈ V, h1, h2 ∈ ρ(Σ<|V |) }.

Proof.
Let N := 1 + max{ |µ| | µ ∈ E∗ is a min. acc. path }.
Let h = ρ(v) ∈ H (v ∈ Σ∗). There is some v̄ ∈ Σ∗ such that ρ(v̄) = ρ(v)−1.
Since (vv̄)N ∈ WPρ(H) = L(A), there is an acc. path α = ω1ω̄1 · · ·ωN ω̄N

such that ℓΣ(ωi) = v, ℓΣ(ω̄i) = v̄.
Taking a min. acc. path µ = e1 · · · en ⊑sc α, we have α = α0e1α1 · · · enαn

(αi ∈ E∗).
By the definition of N , some ωi is “disjoint” from µ, i.e., ωi ⊑ αj for some j.
Thus we have α′

jωiα
′′
j ∈ M(µ, p) (p = s(αj)) for some α′

j, α
′′
j ∈ E<|V |, and

h = ρ(ℓΣ(ωi)) ∈ ρ(ℓΣ(α
′
j))

−1H(µ, p)ρ(ℓΣ(α
′′
j ))

−1.
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