Separating the Wholeness axioms

Hanul Jeon

Cornell University

2024/1/12

Korea Logic Day

Cornell University

Hanul Jeon

Introduction 000000 The Wholeness Axiom

Sketch of the proof

Table of Contents

1 Introduction

2 The Wholeness Axiom

3 Sketch of the proof

・ロト ・回 ト ・ヨト ・ヨト ・ヨー うへの

Cornell University

Hanul Jeon

< 口 > < 同 >

Large cardinal axioms

- Large cardinals are means to gauge the strength of extensions of ZFC.
- Since the beginning of set theory, set theorists defined stronger notion of large cardinals (Inaccessible, Mahlo, Weakly compact, Measurable, Woodin, Supercompact, etc.)
- Large cardinals stronger than measurable cardinals are usually defined in terms of elementary embedding.

The Wholeness Axiom

Sketch of the proof

イロト イ団ト イヨト イヨト

Cornell University

Elementary embedding

Definition

Let $M \subseteq V$ be a transitive class. A map $j: V \to M$ is elementary if for every formula $\phi(\vec{x})$ over the language $\{\in\}$,

$$\phi(\vec{a}) \leftrightarrow \phi^M(j(\vec{a})).$$

 κ is a critical point of j if κ is the least ordinal moved by j, i.e., $j(\kappa) > \kappa$.

Hanul Jeon

Reinhardt embedding

Reinhardt introduced the following 'eventual' form of a large cardinal axiom:

Definition

A cardinal κ is a Reinhardt cardinal if it is the critical point of $j: V \to V$.

An elementary embedding $j: V \rightarrow V$ is called a <u>Reinhardt</u> embedding.

Cornell University

< □ > < 同 > < 回 > < Ξ > < Ξ

Icarian fate of Reinhardt cardinals

However, Reinhardt cardinals cannot exist over ZFC:

Theorem (Kunen 1971, ZFC)

There is no elementary embedding $j: V_{\lambda+2} \rightarrow V_{\lambda+2}$. As a corollary, there is no elementary embedding $j: V \rightarrow V$.

(If we take $\lambda = \sup_{n < \omega} j^n(\kappa)$, then $j \upharpoonright V_{\lambda+2} \colon V_{\lambda+2} \to V_{\lambda+2}$.)

Cornell University

• • • • • • • • • • • •

Hanul Jeon

Cornell University

(Non-in)consistent weakening of Reinhardtness

Set theorists studied the non-inconsistent weakening of Reinhardt cardinals:

Definition

- **1** I₃(λ): There is an elementary $j: V_{\lambda} \to V_{\lambda}$.
- 2 I₂(λ): There is an Σ_1 -elementary[†] $j: V_{\lambda+1} \rightarrow V_{\lambda+1}$.
- **3** I₁(λ): There is an elementary $j: V_{\lambda+1} \rightarrow V_{\lambda+1}$.
- 4 I₀(λ): There is an elementary $j: L(V_{\lambda+1}) \rightarrow L(V_{\lambda+1})$.

They are not known to be inconsistent over ZFC.

[†]A formula is Σ_1 if it takes the form $\exists x \phi(x)$, where every quantifier in ϕ is bounded.

< □ > < 同 > < Ξ > <</p>

Cornell University

Other weakening

The obvious weakening is Reinhardt embedding without Choice. The consistency of ZF with $j: V \rightarrow V$ is yet to be known, but

Theorem (Schultzenberg 2020)

If $\mathsf{ZFC} + I_0(\lambda)$ is consistent, then so is $\mathsf{ZF} + (j \colon V_{\lambda+2} \to V_{\lambda+2})$.

Hanul Jeon

< □ > < 同 > < 回 > < Ξ > < Ξ

Cornell University

Other weakening

The obvious weakening is Reinhardt embedding without Choice. The consistency of ZF with $j: V \rightarrow V$ is yet to be known, but

Theorem (Schultzenberg 2020)

If $\mathsf{ZFC} + I_0(\lambda)$ is consistent, then so is $\mathsf{ZF} + (j \colon V_{\lambda+2} \to V_{\lambda+2})$.

We can also consider Reinhardtness over a weaker theory, like ZFC without Power set:

Theorem (Matthews 2023)

 $\mathsf{ZFC} + \mathrm{I}_1(\lambda)$ proves the consistency of $\mathsf{ZFC}^- + \exists j \colon V \to V$.

Here ZFC⁻ is a technical variant of 'ZFC without Power set.'

Hanul Jeon

Cornell University

Formulating a Reinhardt embedding

An elementary embedding $j: V \rightarrow V$ is a proper class and not a set. That is, we cannot quantify over j. To formulate j over ZFC, let us take the following approach:

Definition

 ZFC_j is the theory over the language $\{\in, j\}$ with the following axioms:

- 1 Usual axioms of ZFC,
- 2 Axiom schema of Separation and Replacement are allowed for formulas over {∈, j}.
- 3 $j: V \to V$ is elementary: For every formula $\phi(\vec{x})$ over the language $\{\in\}$, we have

$$\phi(\vec{x}) \leftrightarrow \phi(j(\vec{x})).$$

Hanul Jeon

イロト イボト イヨト イヨ

Cornell University

The Wholeness axiom

Corazza introduced the Wholeness axiom by restricting Replacement to formulas over $\{\in\}$:

Definition

WA is the combination of the following statement:

- **1** Axiom schema of Separation for formulas over $\{\in, j\}$.
- **2** $j: V \to V$ is elementary.

 $I_3(\lambda)$ proves the consistency of WA; In fact, if $I_3(\lambda)$ holds, then V_{λ} is a model of ZFC + WA.

Image: A mathematical states and a mathem

Cornell University

Weaker variants of WA

Definition

A formula $\phi(x)$ is Σ_n^j if it takes of the form

$$\exists v_0 \forall v_1 \cdots Q x_{\nu-1} \psi(v_0, v_1, \cdots, v_{n-1}, x),$$

where ψ is a formula over the language $\{\in, j\}$ in which every quantifier is bounded. If ψ does not mention j, then we say ϕ is Σ_n .

Definition

 WA_n is obtained from WA by restricting Separation schema to Σ_n^j -formulas.

Hanul Jeon

Theorem (Hamkins 1999)

 WA_0 does not prove WA_1 .

Hamkins asked whether WA_1 proves the consistency of WA_0 .

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Hanul Jeon Separating the Wholeness axioms Cornell University

Theorem (Hamkins 1999)

 WA_0 does not prove WA_1 .

Hamkins asked whether WA_1 proves the consistency of WA_0 .

Theorem (J.)

 WA_1 proves the consistency of WA_0 .

Cornell University

Hanul Jeon

Introduction 000000 The Wholeness Axiom

Sketch of the proof

Main idea

The main idea is to construct a truth predicate satisfying $\mathsf{ZFC} + \mathsf{WA}_0.$

Hanul Jeon

Separating the Wholeness axioms

Cornell University

< 口 > < 同 >

Cornell University

Main idea

The main idea is to construct a truth predicate satisfying $\mathsf{ZFC} + \mathsf{WA}_0.$

The proof will be quite different from the usual consistency proof of large cardinal axiom from the other: In most cases, the proof of $A \rightarrow \text{Con}(B)$ shows 'A proves there are many transitive models of B.'

< ∃⇒

Cornell University

Main idea

The main idea is to construct a truth predicate satisfying $\mathsf{ZFC}+\mathsf{WA}_0.$

The proof will be quite different from the usual consistency proof of large cardinal axiom from the other: In most cases, the proof of $A \rightarrow \text{Con}(B)$ shows 'A proves there are many transitive models of B.'

My proof does not take this form.

< 口 > < 同 >

My argument is similar to the following a master-level example: ZFC proves the consistency of its finite fragment.

[†]In fact, KP suffices.

Hanul Jeon

Separating the Wholeness axioms

Cornell University

Image: A math a math

Cornell University

My argument is similar to the following a master-level example: ZFC proves the consistency of its finite fragment.

- **1** Since there are finitely many formulas, there is n such that every formula of the fragment is Σ_n .
- **2** ZFC can define the truth predicate \vDash_{Σ_n} for Σ_n -formulas.[†]
- 3 By the reflection principle, we can find α such that V_{α} respects \vDash_{Σ_n} . Hence V_{α} satisfies the fragment we fixed.

[†]In fact. KP suffices.

Hanul Jeon

< □ > < 同 > < 回 > < Ξ > < Ξ

Cornell University

We want to mimic a similar argument to prove the consistency of $\mathsf{ZFC} + \mathsf{WA}_0$.

To do this, we must define a truth predicate that can capture every axiom of $\mathsf{ZFC} + \mathsf{WA}_0.$

Lemma $(ZFC + WA_0)$

Let $j: V \to V$ be the elementary embedding. If κ is the least ordinal moved by j, and if $\phi(x)$ is a formula over $\{\in\}$, then

$$\forall x \in V_{\kappa}[\phi(x) \leftrightarrow V_{\kappa} \vDash \phi(x)].$$

In other words, V_{κ} is an 'elementary substructure' of V.

Hanul Jeon

Lemma $(ZFC + WA_0)$

Let j and κ be as before. If we let $\kappa_0 = \kappa$, $\kappa_{n+1} = j(\kappa_n)$, then 1 $\langle \kappa_n | n < \omega \rangle$ is Σ_1^j -definable.

(κ_n | n < ω) is cofinal over the class of all ordinals: That is, for every ordinal α there is n < ω such that α < κ_n.

These two lemma allow us to define a 'truth predicate' for formulas over $\{\in\}$:

Definition

$$\vDash_{\Sigma_{\infty}} \phi(x) \iff \exists n < \omega(x \in V_{\kappa_n} \land V_{\kappa_n} \vDash \phi(x)).$$

Cornell University

イロト イロト イヨト イヨ

Hanul Jeon

イロト イポト イヨト イヨ

Cornell University

Extending the truth predicate

 $\vDash_{\Sigma_{\infty}} \text{ covers every axiom of ZFC, but it is 'too simple' to cover WA_0 since } \vDash_{\Sigma_{\infty}} \text{ does not take any formulas with } j.$

Definition

A class of $\Delta_0^{\prime}(\Sigma_{\infty})$ formulas is the least class of formulas containing formulas in $\{\in\}$ closed under

- **1** Boolean connectives (\land , \lor , \neg , \rightarrow), and
- 2 Bounded quantifiers, which take of the form $\forall u \in j^n(x)$ or $\exists u \in j^n(x)$.

We can define the truth predicate $\vDash_{\Delta_0^j(\Sigma_\infty)}$ for $\Delta_0^j(\Sigma_\infty)$ formulas in a Σ_1^j way, in which we will omit the details.

Cornell University

The unreachable

Recall that we are mimicking the following argument:

- **1** Since there are finitely many formulas, there is n such that every formula of the fragment is \sum_{n} .
- **2** ZFC can define the truth predicate \vDash_{Σ_n} for Σ_n -formulas.
- 3 By the reflection principle, we can find α such that V_{α} respects \vDash_{Σ_n} . Hence V_{α} satisfies the fragment we fixed.

Image: Image:

The unreachable

Recall that we are mimicking the following argument:

- Since ⊨_{Σ∞} is Σ^j₁-definable, every axiom of ZFC + WA₀ is finitely axiomatizable.
- **2** We can define $\vDash_{\Delta_0^j(\Sigma_\infty)}$.
- <u>3</u> Do we have a reflection argument?

The latter step won't work because we do not have Replacement for j-formulas.

Image: A math a math

Cornell University

Strong soundness: What shines the darkness

To get around the issue, we need a proof-theoretic tool:

Definition

Let term_V be the class of all terms generated from constant symbols $\{c_x \mid x \in V\}$ corresponding the class of all sets with a function symbol j.

Let $Form_V$ be the class of all formulas over $\{\in, j\}$, with terms from $term_V$.

For a set X of sentences over $\{\in, j\}$, let S_V^X be the least class containing X and closed under subformulas, term substitution, and Boolean combinations.

Definition

Let X be a set of sentences over $\{\in, j\}$. A class function $T: \operatorname{Form}_V \cup S_V^X \to V$ is a weak class model for X if 1 T(i(t)) = i(T(t)) for $t \in \operatorname{term}_V$. **2** T respects the Tarskian truth definition, i.e., For terms s, s' and t, t', if T(s) = T(s'), T(t) = T(t'), then $T(\lceil s = t \rceil) = T(\lceil s' = t' \rceil)$ and $T(\lceil s \in t \rceil) = T(\lceil s' \in t' \rceil)$. $T(\ulcorner \neg \sigma \urcorner) = 1 - T(\ulcorner \sigma \urcorner).$ If \circ is a logical connective, then $T(\neg \phi \circ \psi \neg) = 1$ if and only if $T(\ulcorner \phi \urcorner) \circ T(\ulcorner \psi \urcorner) = 1.$ If Q is a quantifier, then $T(\lceil Qx\phi(x)\rceil) = 1$ if and only if $Qx[T(\ulcorner\phi(x)\urcorner) = 1]$ holds.*

*It applies only when $\lceil Qx\phi(x)\rceil \in S_V^X$.

Hanul Jeon

Separating the Wholeness axioms

Cornell University

・ロト ・日 ・ ・ ヨト ・ ヨ

< □ > < 同 > < Ξ > <</p>

Cornell University

Q&A

The main feature of a weak class model is that it evaluates the truth of a class of formulas even if the class is not closed under quantifiers.

The following lemma says a weak class model is enough to establish the consistency:

Lemma (Strong Soundness, $ZFC + WA_1$)

If there is a Π_1^j -definable weak class model for X, then X is consistent.

We can construct a Π_1^j -definable class model of ZFC + WA₀ from $\vDash_{\Delta_0^j(\Sigma_\infty)}$.

Introduction 000000 The Wholeness Axiom 0000 Sketch of the proof

Questions

Cornell University

Hanul Jeon Separating the Wholeness axioms

< ロ > < 回 > < 回 > < 回 > <</p>

Thank you!

Hanul Jeon

Separating the Wholeness axioms

≣ ► ≣ ∽९० Cornell University