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Preliminaries on basic model theory

Definition

• By a language, we mean a set of constant symbols, relation symbols,
and function symbols.

• Let L be a language. By an L-theory, we mean a set of L-sentences
(L-formula without free variable) which yields no contradiction.

• Let L = {c0, ...,R0, ..., f0, ...} be a language, where ci is a constant
symbol for each i , Ri is an ni -ary relation symbol for each i , and fi is
an mi -ary function symbol for each i . By an L-structure (model) M,
we mean a tuple (M, cM0 , ...,R

M
0 , ..., f

M
0 , ...), where M is a set,

cMi ∈ M for each i , RM
i ⊆ Mni for each i , and fi : Mmk → M for

each i . M is called the universe of M.



Preliminaries on basic model theory

Definition

• Let L be a language, T be an L-theory, σ be an L-sentence, M be
an L-structure. By M |= σ, we mean σ is true in M. By M |= T , we
mean that M |= σ for all σ ∈ T .

• Let L be a language, M be an L-structure. By Th(M), we mean the
set of all L-sentences σ such that M |= σ.

• Let L be a language, T be an L-theory. By Mod(T ), we mean the
class of all L-structures M such that M |= T .

• Let L be a language, K be a class of L-structures. We say K is an
elementary class if there exists an L-theory T such that
K = Mod(T ).



Preliminaries on basic model theory

Example

Let C, R, Q, Z be the set of complex numbers, real numbers, rational
numbers, integers, respectively.

• Let L = {0, 1,+,−, ·} be a language where 0, 1 are constant
symbols, +, −, · are binary function symbols. Then C and R can be
regarded as L-structures and C |= σ, R |= ¬σ where

σ := ∃x(x · x = −1).

• Let L = {<} be a language where < is a binary relation symbol.
Then Q and Z can be regarded as L-structures and Q |= τ , Z |= ¬τ
where

τ := ∀xy(x < y → ∃z(x < z < y)).



Categorizing first-order theories

We can categorize first-order theories according to the combinatorial
configurations. Let L be a language and T be an L-theory.

Definition

T is said to be stable if there is no L-formula ϕ(x , y), L-structure
M |= T and (ai , bi )i∈ω∈M such that

(i) M |= ϕ(ai , bj) if and only if i < j .

If there exist ϕ, M |= T , (ai , bi )∈M which satisfy (i), then we say T has
the order property (OP).

Example

Let L = {<}. Then Th(Z) has the order property (thus it is unstable)
since ϕ(x , y) := x < y satisfies (i) with ai = 2i , bi = 2i − 1 ∈ Z.
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Categorizing first-order theories

Definition

T is said to be NIP if there is no L-formula ϕ(x , y), L-structure M |= T ,
(ai )i∈ω∈M, and (bI)I⊆ω such that

(ii) M |= ϕ(ai , bI) if and only if i ∈ I.

If there exist ϕ, M |= T , (ai , bI)∈M which satisfy (ii), then we say T
has the independence property (IP).

Example

Let L = {0, 1,+,−, ·}. Then Th(N) has the independence property since
ϕ(x , y) := ∃z(x · z = y) satisfies (ii) with ai = pi and bI =

∏
i∈I pi where

pi is the i-th prime number.
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Categorizing first-order theories

stable ⇒ NIP



Categorizing first-order theories

Notation

• ω<ω is the set of all finite sequences of natural numbers.

• ωω is the set of all infinite (countable) sequences of natural numbers.

• For η, ν ∈ ω<ω, by η E ν we mean that η is an initial segment of ν.

• For η, ν ∈ ω<ω, by η ⊥ ν we mean that η 6E ν and ν 6E η.

• We assume ∅ ∈ ω<ω and ∅ E η for all η ∈ ω<ω.

Example

• 〈2〉 E 〈2, 3〉 E 〈2, 3, 1〉 E 〈2, 3, 1, 5〉 E ....

• 〈7, 2, 5〉 ⊥ 〈7, 2, 9〉.



Categorizing first-order theories

Definition

T is said to be simple if there is no L-formula ϕ(x , y), L-structure
M |= T , (aη)η∈ω<ω such that

(iii) {ϕ(x , aηdn)}n∈ω is consistent for all η ∈ ωω .

(iv) {ϕ(x , aη_i ), ϕ(x , aη_j)} is inconsistent for all η ∈ ω<ω and
i < j ∈ ω.

If there exist ϕ, M |= T , (aη)η∈ω<ω∈M which satisfy (iii) and (iv), then
we say T has the tree property (TP).

Example

Let L = {<}. Then Th(R) has the tree property since
ϕ(x , y0, y1) := y0 < x < y1 satisfies (iii) and (iv) with
aη_i = (

∑
k≤l(η)

1
10k
η(k) + 1

10l(η)+1 i ,
∑

k≤l(η)
1

10k
η(k) + 1

10l(η)+1 (i + 1)).

For example, a〈2,3,5〉 = (0.235, 0.236) and hence
ϕ(x , a〈2,3,5〉) := 0.235 < x < 0.236.
{ϕ(x , a〈3〉), ϕ(x , a〈3,4〉), ϕ(x , a〈3,4,8〉), ...} is consistent.
{ϕ(x , a〈6,4,7〉), ϕ(x , a〈6,4,8〉)} is inconsistent.
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Categorizing first-order theories

NIP

⇑
stable ⇒ simple



Categorizing first-order theories

Definition

We say T has the tree property of the second kind (TP2) if there exist
ϕ(x , y), M |= T , (ai,j)i,j∈ω ∈M such that

{ϕ(x , an,f (n))}n∈ω is consistent for all f : ω → ω,

{ϕ(x , ai,j), ϕ(x , ai,k))} is inconsistent for all i , j , k ∈ ω with j 6= k.

We say T is NTP2 if it does not have TP2.
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Categorizing first-order theories

NIP ⇒ NTP2

⇑ ⇑
stable ⇒ simple



Categorizing first-order theories

Definition

• We say T has the tree property of the first kind (TP1) if there exist
ϕ(x , y), M |= T , (aη)η∈ω<ω ∈M such that

{ϕ(x , aηdn)}n∈ω is consistent for all η ∈ ωω,
{ϕ(x , aη), ϕ(x , aν)} is inconsistent for all η ⊥ ν.

We say T is NTP1 if it does not have TP1.

• We say T has the 2-strong order property (SOP2) if there exist
ϕ(x , y), M |= T , (aη)η∈2<ω ∈M such that

{ϕ(x , aηdn)}n∈ω is consistent for all η ∈ 2ω,
{ϕ(x , aη), ϕ(x , aν)} is inconsistent for all η ⊥ ν.

We say T is NSOP2 if it does not have SOP2.

Fact

• TP1 ⇔ SOP2.

• TP ⇔ TP1 ∨ TP2.



Categorizing first-order theories

NIP ⇒ NTP2

⇑ ⇑
stable ⇒ simple ⇒ NTP1 ⇔ NSOP2



Categorizing first-order theories

Definition

• We say T has the 1-strong order property (SOP1) if there exist
ϕ(x , y), M |= T , (aη)η∈2<ω ∈M such that

{ϕ(x , aηdn)}n∈ω is consistent for all η ∈ 2ω,
{ϕ(x , aη_1), ϕ(x , aη_0_ν)} is inconsistent for all η, ν ∈ 2<ω.

We say T is NSOP1 if it does not have SOP1.

Remark

• simple ⇒ NSOP1.

• SOP2 ⇒ SOP1 is well-known. We still do not know whether the
converse holds.



Categorizing first-order theories

NIP ⇒ NTP2

⇑ ⇑
stable ⇒ simple ⇒ NSOP1 ⇒ NSOP2



Categorizing first-order theories

Definition

• X ⊆ 2<ω is called an antichain if η ⊥ ν for all distinct η, ν ∈ X .

• We say T has the antichain tree property (ATP) if there exist
ϕ(x , y), M |= T , (aη)η∈2<ω ∈M such that

{ϕ(x , aη)}η∈X is consistent for all antichain X in 2<ω,
{ϕ(x , aη), ϕ(x , aν)} is inconsistent for all η E ν.

We say T is NATP if it does not have ATP.

Remark

• NSOP1 ⇒ NATP.

• NTP2 ⇒ NATP.

• If there exists a theory which is SOP1 and NSOP2, then the theory
is ATP.



Categorizing first-order theories

NIP ⇒ NTP2 ⇒ NATP

⇑ ⇑ ⇑
stable ⇒ simple ⇒ NSOP1 ⇒ NSOP2



Categorizing first-order theories

In fact, there are more dividing lines in the class of first-order theories.



Categorizing first-order theories

This classification gives us ways of understanding mathematical objects,
for example

• If a field is superstable, then it is algebraically closed field.

• If a field is of finite dp-rank, then it is perfect.

• If a graph has the tree property, then it is not a random graph.

and so on.



One-variable theorem for antichain tree property
If a theory has TP1 (or TP2, SOP1), then it is witnessed by a formula
ϕ(x , y) and the arity of x may vary. Thus if we want to show that a
theory is NTP1 (NTP2, NSOP1, respectively) directly from the definition,
then we need to check that there is no formula which witnesses TP1

(TP2, SOP1). But the complexity of formula increases rapidly as the
arity of its free variable increases. This is the difficulty of showing a
theory is NTP1 (NTP2, NSOP1) directly from the definition.
One-variable theorem for tree properties may simplify this problem.

One-variable theorem for TP2 [A. Chernikov]

If T has TP2, then it is witnessed by ϕ(x , y) with |x | = 1.

One-variable theorem for SOP1 [N. Ramsey]

If T has SOP1, then it is witnessed by ϕ(x , y) with |x | = 1.

One-variable theorem for TP1 [A. Chernikov, N. Ramsey]

If T has TP1, then it is witnessed by ϕ(x , y) with |x | = 1.



One-variable theorem for antichain tree property

Thus if we want to check a theory is NTP1 (NTP2, NSOP1), then we
only need to check that every formula in a single free variable does not
witnesses TP1 (TP2, SOP1). Thus it is natural to ask whether the similar
statement holds for ATP.

Theorem [J. Ahn, J. Lee, J. Kim]

If T has ATP, then it is witnessed by ϕ(x , y) with |x | = 1.

Thus when we check if a theory is NATP, it is enough to show that there
is no formula in a single free variable which witnesses ATP. Furthermore,
if the theory has the quantifier elimination, then the verification will be
much easier by the following observation.

Proposition

If ϕ ∨ ψ does not witness ATP, then ϕ and ψ do not witness ATP.

Therefore we only need to check if there is no formula in a single free
variable, of the form the conjunction of basic formulas.



Strategy of the proof

Path-Collapse Lemma [A. Chernikov, N. Ramsey]

Suppose κ is an infinite cardinal, (aη)η∈2<κ is a tree str-indiscernible over
a set of parameters C and, moreover, (a0α)0<α<ω is order indiscernible
over cC . Let

p(y ; z̄) = tp(c ; (a0_0γ )γ<κ/C ).

Then if
p(y : (a0_0γ )γ<κ) ∪ p(y : (a1_0γ )γ<κ)

is not consistent, then T has SOP2, witnessed by a formula with free
variables y .

To obtain a witness of ATP in a single free variable, we find an
appropriate statement which is similar to the path-collapse lemma. In
short, we prove two modified lemmas of the path-collapse lemma for the
purpose of dealing with antichains and ATP. The shapes of the lemmas
will be made to reflect the construction of antichain trees.



Strategy of the proof

Definition

An antichain X ⊆ 2<κ is said to be maximal if Y ⊆ 2<κ is not an
antichain whenever X ( Y .

Remark

Let αn denotes the number of all maximal antichains in 2<n. Then
α0 = 0 and αn+1 = α2

n + 1 for each n ∈ ω. Let {Xi}i∈αn be the set of all
maximal antichains in 2<n. Then

{(〈0〉_Xi ) ∪ (〈1〉_Xj) : i , j < αn} ∪ {∅}

is the set of all maximal antichains in 2<n+1. Thus αn+1 = α2
n + 1 for

each n ∈ ω.

Note that to obtain all maximal antichains in 2<n+1, first we take the
product of two copies of all maximal antichains in 2<n, and then we add
one more maximal antichain which is located below all antichains
constructed in the first step.



Strategy of the proof

By a collapsible family of antichains, we mean a set of antichains such
that the union of types over each antichain is consistent, or it yields ATP.
More precisely,

Definition

Let κ be an infinite cardinal and X0, ...,Xn ⊆ Q<κ be endless dense
universal antichains with |X0| = ... = |Xn| and X0 ∼str ... ∼str Xn. Let us
consider the following condition.

(∗) For any set C ⊆M, b ∈M, tree indexed set (aη)η∈Q<κ which is
str-indiscernible over C , and i ≤ n, if (aη)η∈Xi is δ-indiscernible over
bC , then

⋃
j≤n p(y , (aη)η∈Xj ) is consistent where

p(y , z̄) = tp(b, (aη)η∈Xi/C ) or there is a formula with free variable
y which witnesses ATP.

If X0, ...,Xn satisfies (∗), then we say they are collapsible. By a
collapsible family, we mean a set of endless dense universal antichains
which are collapsible.



Strategy of the proof

1st Antichain-Collapse Lemma

Let κ be a sufficiently large cardinal, and {X0, ..., Xn} be a collapsible
family in Q<κ. Then for any ν, ξ ∈ Q<κ with ν ⊥ ξ and ν <lex ξ,

{X ν
i ∪ Y ∪ X ξ

j : i , j ≤ n}

is a collapsible family, where X ν
i = ν_Xi and X ξ

j = ξ_Xj for each
i , j ≤ n, and

Y = {ν ∧ ξ_〈s〉_η : ν(l(ν ∧ ξ) + 1) < s < ξ(l(ν ∧ ξ) + 1), η ∈ Qω}.

Roughly speaking, the first antichain-collapse lemma says that the class
of collapsible family is closed under the product. In other words, if a set
of antichains is collapsible, then the product of two copies of the set is
also collapsible.



Strategy of the proof

2nd Antichain-Collapse Lemma

Let κ be a sufficiently large cardinal, and {X ′0, ..., X ′n} be a collapsible
family in Q<κ. Then there is a collapsible family {X0, ..., Xn+1} in Q<κ
which satisfies that there are χ ∈ Xn+1 and χ′ D χ such that
X0 = χ′_X ′0, ..., Xn = χ′_X ′n.

The second antichain-collapse lemma says that if a collapsible family F is
given, then we can find an appropriate antichain X which is located
below F , and F ∪ {X} is still collapsible.



Strategy of the proof

Sketch of the proof of the main theorem

Let ϕ(x , y ; z) witnesses ATP in free variables x , y where |y | = 1. Then
by using antichain-collapse lemmas, we can construct collapsible family
Fn for each n ∈ ω, whose antichains represent all maximal antichains in
some binary tree with height n. By choosing suitable elements in
antichains of Fn we can find a common realization for y which makes
ϕ(x ; y , z) witnesses ATP in free variable x . Thus we can reduce the arity
of free variable of witness of ATP and by repeating this we obtain a
witness of ATP in a single free variable.



Question

• Is there an example of strictly NATP theory? (an NATP theory
which is not NTP1, not NSOP1)

• Is there a suitable independence notion for NATP?

• Is there a Kim-Pillay style criterion for NATP?
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