One-variable theorem for antichain tree property

Joonhee Kim

Yonsei University

January 14, 2021

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Outline

Preliminaries on basic model theory

Categorizing first-order theories

One-variable theorem for antichain tree property

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Preliminaries on basic model theory

Definition

- By a *language*, we mean a set of constant symbols, relation symbols, and function symbols.
- Let \mathcal{L} be a language. By an \mathcal{L} -theory, we mean a set of \mathcal{L} -sentences (\mathcal{L} -formula without free variable) which yields no contradiction.
- Let $\mathcal{L} = \{c_0, ..., R_0, ..., f_0, ...\}$ be a language, where c_i is a constant symbol for each *i*, R_i is an n_i -ary relation symbol for each *i*, and f_i is an m_i -ary function symbol for each *i*. By an \mathcal{L} -structure (model) \mathbb{M} , we mean a tuple $(M, c_0^{\mathbb{M}}, ..., R_0^{\mathbb{M}}, ..., f_0^{\mathbb{M}}, ...)$, where *M* is a set, $c_i^{\mathbb{M}} \in M$ for each *i*, $R_i^{\mathbb{M}} \subseteq M^{n_i}$ for each *i*, and $f_i : M^{m_k} \to M$ for each *i*. *M* is called the universe of \mathbb{M} .

Preliminaries on basic model theory

Definition

- Let *L* be a language, *T* be an *L*-theory, *σ* be an *L*-sentence, M be an *L*-structure. By M ⊨ *σ*, we mean *σ* is true in M. By M ⊨ *T*, we mean that M ⊨ *σ* for all *σ* ∈ *T*.
- Let \mathcal{L} be a language, \mathbb{M} be an \mathcal{L} -structure. By $Th(\mathbb{M})$, we mean the set of all \mathcal{L} -sentences σ such that $\mathbb{M} \models \sigma$.
- Let \mathcal{L} be a language, T be an \mathcal{L} -theory. By Mod(T), we mean the class of all \mathcal{L} -structures \mathbb{M} such that $\mathbb{M} \models T$.
- Let *L* be a language, *K* be a class of *L*-structures. We say *K* is an elementary class if there exists an *L*-theory *T* such that *K* = Mod(*T*).

Preliminaries on basic model theory

Example

Let $\mathbb{C},\,\mathbb{R},\,\mathbb{Q},\,\mathbb{Z}$ be the set of complex numbers, real numbers, rational numbers, integers, respectively.

• Let $\mathcal{L} = \{0, 1, +, -, \cdot\}$ be a language where 0, 1 are constant symbols, +, -, \cdot are binary function symbols. Then \mathbb{C} and \mathbb{R} can be regarded as \mathcal{L} -structures and $\mathbb{C} \models \sigma$, $\mathbb{R} \models \neg \sigma$ where

$$\sigma := \exists x (x \cdot x = -1).$$

• Let $\mathcal{L} = \{<\}$ be a language where < is a binary relation symbol. Then \mathbb{Q} and \mathbb{Z} can be regarded as \mathcal{L} -structures and $\mathbb{Q} \models \tau$, $\mathbb{Z} \models \neg \tau$ where

$$\tau := \forall xy (x < y \rightarrow \exists z (x < z < y)).$$

We can categorize first-order theories according to the combinatorial configurations. Let \mathcal{L} be a language and \mathcal{T} be an \mathcal{L} -theory.

Definition

T is said to be *stable* if there is no \mathcal{L} -formula $\varphi(x, y)$, \mathcal{L} -structure $\mathbb{M} \models T$ and $(a_i, b_i)_{i \in \omega} \in \mathbb{M}$ such that

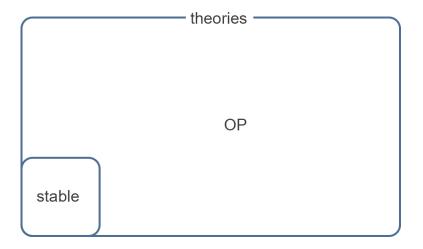
(*i*) $\mathbb{M} \models \varphi(a_i, b_j)$ if and only if i < j.

If there exist φ , $\mathbb{M} \models T$, $(a_i, b_i) \in \mathbb{M}$ which satisfy (i), then we say T has the *order property (OP)*.

Example

Let $\mathcal{L} = \{<\}$. Then Th(\mathbb{Z}) has the order property (thus it is unstable) since $\varphi(x, y) := x < y$ satisfies (i) with $a_i = 2i, b_i = 2i - 1 \in \mathbb{Z}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・



◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ▲□▶

Definition

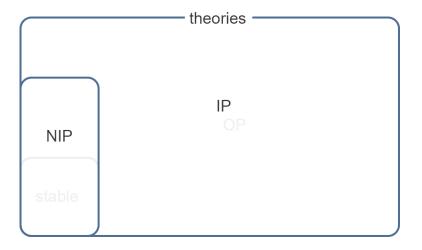
T is said to be *NIP* if there is no \mathcal{L} -formula $\varphi(x, y)$, \mathcal{L} -structure $\mathbb{M} \models T$, $(a_i)_{i \in \omega} \in \mathbb{M}$, and $(b_I)_{I \subseteq \omega}$ such that

(*ii*) $\mathbb{M} \models \varphi(a_i, b_I)$ if and only if $i \in I$.

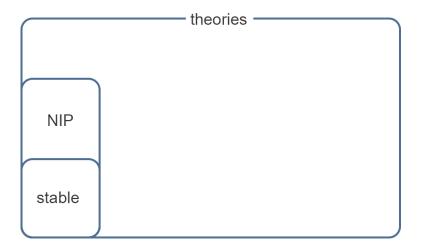
If there exist φ , $\mathbb{M} \models T$, $(a_i, b_I) \in \mathbb{M}$ which satisfy (ii), then we say T has the *independence property (IP)*.

Example

Let $\mathcal{L} = \{0, 1, +, -, \cdot\}$. Then Th(\mathbb{N}) has the independence property since $\varphi(x, y) := \exists z(x \cdot z = y)$ satisfies (ii) with $a_i = p_i$ and $b_I = \prod_{i \in I} p_i$ where p_i is the i-th prime number.



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○



 $\mathsf{stable} \Rightarrow \mathsf{NIP}$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Notation

- $\omega^{<\omega}$ is the set of all finite sequences of natural numbers.
- ω^{ω} is the set of all infinite (countable) sequences of natural numbers.
- For $\eta, \nu \in \omega^{<\omega}$, by $\eta \trianglelefteq \nu$ we mean that η is an initial segment of ν .
- For $\eta, \nu \in \omega^{<\omega}$, by $\eta \perp \nu$ we mean that $\eta \not \leq \nu$ and $\nu \not \leq \eta$.
- We assume $\emptyset \in \omega^{<\omega}$ and $\emptyset \trianglelefteq \eta$ for all $\eta \in \omega^{<\omega}$.

Example

- $\langle 2 \rangle \trianglelefteq \langle 2, 3 \rangle \trianglelefteq \langle 2, 3, 1 \rangle \trianglelefteq \langle 2, 3, 1, 5 \rangle \trianglelefteq$
- $\langle 7,2,5 \rangle \perp \langle 7,2,9 \rangle$.

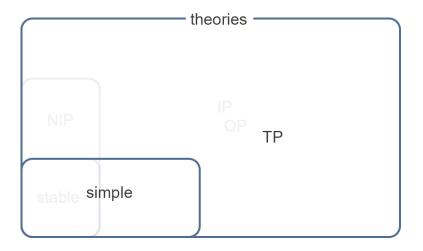
Definition

T is said to be simple if there is no L-formula φ(x, y), L-structure
M ⊨ T, (a_η)_{η∈ω^{<ω}} such that
(iii) {φ(x, a_{ηΓn})}_{n∈ω} is consistent for all η ∈ ω^ω.
(iv) {φ(x, a_{η^{¬i}}), φ(x, a_{η^{¬j}})} is inconsistent for all η ∈ ω^{<ω} and i < j ∈ ω.

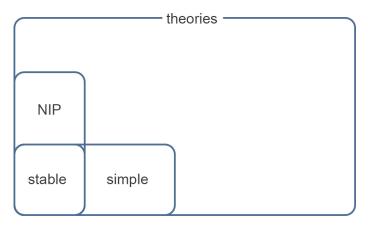
If there exist φ , $\mathbb{M} \models T$, $(a_\eta)_{\eta \in \omega^{<\omega}} \in \mathbb{M}$ which satisfy (iii) and (iv), then we say T has the *tree property (TP)*.

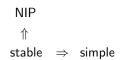
Example

Let
$$\mathcal{L} = \{<\}$$
. Then Th(\mathbb{R}) has the tree property since
 $\varphi(x, y_0, y_1) := y_0 < x < y_1$ satisfies (iii) and (iv) with
 $a_{\eta \frown i} = (\sum_{k \le l(\eta)} \frac{1}{10^k} \eta(k) + \frac{1}{10^{l(\eta)+1}} i, \sum_{k \le l(\eta)} \frac{1}{10^k} \eta(k) + \frac{1}{10^{l(\eta)+1}} (i+1)).$
For example, $a_{(2,3,5)} = (0.235, 0.236)$ and hence
 $\varphi(x, a_{(2,3,5)}) := 0.235 < x < 0.236.$
 $\{\varphi(x, a_{(3)}), \varphi(x, a_{(3,4)}), \varphi(x, a_{(3,4,8)}), ...\}$ is consistent.
 $\{\varphi(x, a_{(6,4,7)}), \varphi(x, a_{(6,4,8)})\}$ is inconsistent.



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

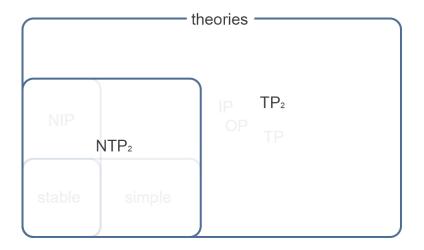




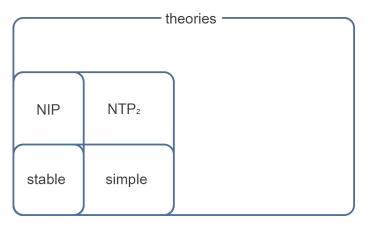
(ロ)、(型)、(E)、(E)、 E) のQ(()

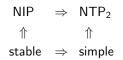
Definition

We say T has the tree property of the second kind (TP₂) if there exist $\varphi(x, y)$, $\mathbb{M} \models T$, $(a_{i,j})_{i,j \in \omega} \in \mathbb{M}$ such that $\{\varphi(x, a_{n,f(n)})\}_{n \in \omega}$ is consistent for all $f : \omega \to \omega$, $\{\varphi(x, a_{i,j}), \varphi(x, a_{i,k})\}$ is inconsistent for all $i, j, k \in \omega$ with $j \neq k$. We say T is NTP₂ if it does not have TP₂.



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●





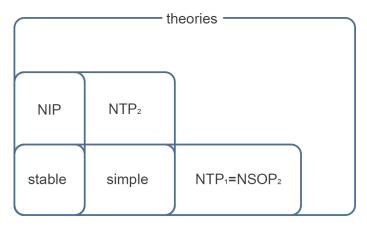
Definition

We say T has the tree property of the first kind (TP₁) if there exist φ(x, y), M ⊨ T, (a_η)_{η∈ω} ≤ M such that {φ(x, a_η), β_{n∈ω} is consistent for all η ∈ ω^ω, {φ(x, a_η), φ(x, a_ν)} is inconsistent for all η ⊥ ν.
We say T is NTP₁ if it does not have TP₁.
We say T has the 2-strong order property (SOP₂) if there exist φ(x, y), M ⊨ T, (a_η)_{η∈2} ∈ M such that {φ(x, a_η), β_{n∈ω} is consistent for all η ∈ 2^ω, {φ(x, a_η), β_{n∈ω} is consistent for all η ∈ 2^ω, {φ(x, a_η), φ(x, a_ν)} is inconsistent for all η ⊥ ν.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Fact

- $\mathsf{TP}_1 \Leftrightarrow \mathsf{SOP}_2$.
- $\mathsf{TP} \Leftrightarrow \mathsf{TP}_1 \lor \mathsf{TP}_2.$



 $\begin{array}{rcl} \mathsf{NIP} & \Rightarrow & \mathsf{NTP}_2 \\ & \uparrow & & \uparrow \\ \mathsf{stable} & \Rightarrow & \mathsf{simple} \Rightarrow \mathsf{NTP}_1 \Leftrightarrow \mathsf{NSOP}_2 \end{array}$

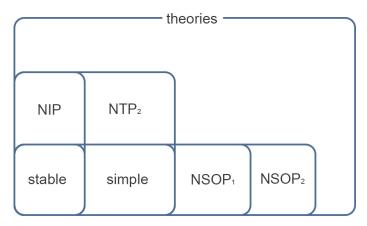
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Definition

We say T has the 1-strong order property (SOP₁) if there exist φ(x, y), M ⊨ T, (a_η)_{η∈2^{<ω}} ∈ M such that {φ(x, a_{ηΓn})}_{n∈ω} is consistent for all η ∈ 2^ω, {φ(x, a_η-1), φ(x, a_η-0-ν)} is inconsistent for all η, ν ∈ 2^{<ω}.
 We say T is NSOP₁ if it does not have SOP₁.

Remark

- simple \Rightarrow NSOP₁.
- $\mathsf{SOP}_2 \Rightarrow \mathsf{SOP}_1$ is well-known. We still do not know whether the converse holds.



 $\begin{array}{rcl} \mathsf{NIP} & \Rightarrow & \mathsf{NTP}_2 \\ & \uparrow & & \uparrow \\ \mathsf{stable} & \Rightarrow & \mathsf{simple} \Rightarrow \mathsf{NSOP}_1 \Rightarrow \mathsf{NSOP}_2 \end{array}$

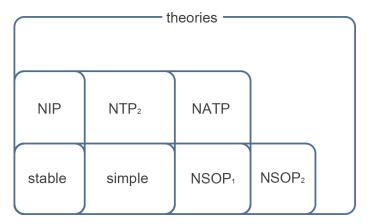
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Definition

- $X \subseteq 2^{<\omega}$ is called an *antichain* if $\eta \perp \nu$ for all distinct $\eta, \nu \in X$.
- We say T has the antichain tree property (ATP) if there exist φ(x, y), M ⊨ T, (a_η)_{η∈2^{<ω}} ∈ M such that {φ(x, a_η)}_{η∈X} is consistent for all antichain X in 2^{<ω}, {φ(x, a_η), φ(x, a_ν)} is inconsistent for all η ≤ ν.
 We say T is NATP if it does not have ATP.

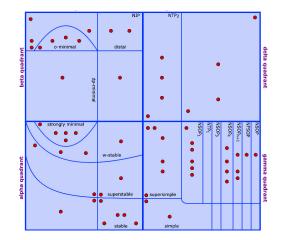
Remark

- $\mathsf{NSOP}_1 \Rightarrow \mathsf{NATP}.$
- $NTP_2 \Rightarrow NATP.$
- If there exists a theory which is SOP₁ and NSOP₂, then the theory is ATP.



 $\begin{array}{rcl} \mathsf{NIP} \ \Rightarrow \ \mathsf{NTP}_2 \ \Rightarrow \ \mathsf{NATP} \\ & \uparrow & \uparrow \\ \mathsf{stable} \ \Rightarrow \ \mathsf{simple} \ \Rightarrow \ \mathsf{NSOP}_1 \ \Rightarrow \ \mathsf{NSOP}_2 \end{array}$

In fact, there are more dividing lines in the class of first-order theories.



▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

This classification gives us ways of understanding mathematical objects, for example

- If a field is superstable, then it is algebraically closed field.
- If a field is of finite dp-rank, then it is perfect.

• If a graph has the tree property, then it is not a random graph. and so on.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

One-variable theorem for antichain tree property

If a theory has TP₁ (or TP₂, SOP₁), then it is witnessed by a formula $\varphi(x, y)$ and the arity of x may vary. Thus if we want to show that a theory is NTP₁ (NTP₂, NSOP₁, respectively) directly from the definition, then we need to check that there is no formula which witnesses TP₁ (TP₂, SOP₁). But the complexity of formula increases rapidly as the arity of its free variable increases. This is the difficulty of showing a theory is NTP₁ (NTP₂, NSOP₁) directly from the definition. One-variable theorem for tree properties may simplify this problem.

One-variable theorem for TP₂ [A. Chernikov]

If T has TP₂, then it is witnessed by $\varphi(x, y)$ with |x| = 1.

One-variable theorem for SOP_1 [N. Ramsey]

If T has SOP₁, then it is witnessed by $\varphi(x, y)$ with |x| = 1.

One-variable theorem for TP₁ [A. Chernikov, N. Ramsey]

If T has TP₁, then it is witnessed by $\varphi(x, y)$ with |x| = 1.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

One-variable theorem for antichain tree property

Thus if we want to check a theory is NTP₁ (NTP₂, NSOP₁), then we only need to check that every formula in a single free variable does not witnesses TP₁ (TP₂, SOP₁). Thus it is natural to ask whether the similar statement holds for ATP.

Theorem [J. Ahn, J. Lee, J. Kim]

If T has ATP, then it is witnessed by $\varphi(x, y)$ with |x| = 1.

Thus when we check if a theory is NATP, it is enough to show that there is no formula in a single free variable which witnesses ATP. Furthermore, if the theory has the quantifier elimination, then the verification will be much easier by the following observation.

Proposition

If $\varphi \lor \psi$ does not witness ATP, then φ and ψ do not witness ATP.

Therefore we only need to check if there is no formula in a single free variable, of the form the conjunction of basic formulas.

Path-Collapse Lemma [A. Chernikov, N. Ramsey]

Suppose κ is an infinite cardinal, $(a_\eta)_{\eta \in 2^{<\kappa}}$ is a tree str-indiscernible over a set of parameters *C* and, moreover, $(a_{0^{\alpha}})_{0 < \alpha < \omega}$ is order indiscernible over *cC*. Let

$$p(y;\bar{z}) = \operatorname{tp}(c;(a_0 \frown 0^{\gamma})_{\gamma < \kappa}/C).$$

Then if

$$p(y:(a_0\frown_{0^{\gamma}})_{\gamma<\kappa})\cup p(y:(a_1\frown_{0^{\gamma}})_{\gamma<\kappa})$$

is not consistent, then T has SOP₂, witnessed by a formula with free variables y.

To obtain a witness of ATP in a single free variable, we find an appropriate statement which is similar to the path-collapse lemma. In short, we prove two modified lemmas of the path-collapse lemma for the purpose of dealing with antichains and ATP. The shapes of the lemmas will be made to reflect the construction of antichain trees.

Definition

An antichain $X \subseteq 2^{<\kappa}$ is said to be *maximal* if $Y \subseteq 2^{<\kappa}$ is not an antichain whenever $X \subsetneq Y$.

Remark

Let α_n denotes the number of all maximal antichains in $2^{\leq n}$. Then $\alpha_0 = 0$ and $\alpha_{n+1} = \alpha_n^2 + 1$ for each $n \in \omega$. Let $\{X_i\}_{i \in \alpha_n}$ be the set of all maximal antichains in $2^{\leq n}$. Then

$$\{(\langle 0\rangle^{\frown}X_i)\cup(\langle 1\rangle^{\frown}X_j):i,j<\alpha_n\}\cup\{\emptyset\}$$

is the set of all maximal antichains in $2^{\leq n+1}$. Thus $\alpha_{n+1} = \alpha_n^2 + 1$ for each $n \in \omega$.

Note that to obtain all maximal antichains in $2^{\leq n+1}$, first we take the product of two copies of all maximal antichains in $2^{\leq n}$, and then we add one more maximal antichain which is located below all antichains constructed in the first step.

By a collapsible family of antichains, we mean a set of antichains such that the union of types over each antichain is consistent, or it yields ATP. More precisely,

Definition

Let κ be an infinite cardinal and $X_0, ..., X_n \subseteq \mathbb{Q}^{<\kappa}$ be endless dense universal antichains with $|X_0| = ... = |X_n|$ and $X_0 \sim_{str} ... \sim_{str} X_n$. Let us consider the following condition.

(*) For any set C ⊆ M, b ∈ M, tree indexed set (a_η)_{η∈Q^{<κ}} which is str-indiscernible over C, and i ≤ n, if (a_η)_{η∈X_i} is δ-indiscernible over bC, then ⋃_{j≤n} p(y, (a_η)_{η∈X_j}) is consistent where p(y, z̄) = tp(b, (a_η)_{η∈X_i}/C) or there is a formula with free variable y which witnesses ATP.

If $X_0, ..., X_n$ satisfies (*), then we say they are *collapsible*. By a *collapsible family*, we mean a set of endless dense universal antichains which are collapsible.

1st Antichain-Collapse Lemma

Let κ be a sufficiently large cardinal, and $\{X_0, ..., X_n\}$ be a collapsible family in $\mathbb{Q}^{<\kappa}$. Then for any $\nu, \xi \in \mathbb{Q}^{<\kappa}$ with $\nu \perp \xi$ and $\nu <_{lex} \xi$,

$$\{X_i^{\nu}\cup Y\cup X_j^{\xi}: i,j\leq n\}$$

is a collapsible family, where $X_i^{\nu} = \nu^{\frown} X_i$ and $X_j^{\xi} = \xi^{\frown} X_j$ for each $i, j \leq n$, and

$$Y = \{\nu \land \xi^{\frown} \langle s \rangle^{\frown} \eta : \nu(l(\nu \land \xi) + 1) < s < \xi(l(\nu \land \xi) + 1), \eta \in \mathbb{Q}^{\omega}\}.$$

Roughly speaking, the first antichain-collapse lemma says that the class of collapsible family is *closed under the product*. In other words, if a set of antichains is collapsible, then the product of two copies of the set is also collapsible.

2nd Antichain-Collapse Lemma

Let κ be a sufficiently large cardinal, and $\{X'_0, ..., X'_n\}$ be a collapsible family in $\mathbb{Q}^{<\kappa}$. Then there is a collapsible family $\{X_0, ..., X_{n+1}\}$ in $\mathbb{Q}^{<\kappa}$ which satisfies that there are $\chi \in X_{n+1}$ and $\chi' \succeq \chi$ such that $X_0 = \chi' \cap X'_0, ..., X_n = \chi' \cap X'_n$.

The second antichain-collapse lemma says that if a collapsible family \mathcal{F} is given, then we can find an appropriate antichain X which is located below \mathcal{F} , and $\mathcal{F} \cup \{X\}$ is still collapsible.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Sketch of the proof of the main theorem

Let $\varphi(x, y; z)$ witnesses ATP in free variables x, y where |y| = 1. Then by using antichain-collapse lemmas, we can construct collapsible family \mathcal{F}_n for each $n \in \omega$, whose antichains represent all maximal antichains in some binary tree with height n. By choosing suitable elements in antichains of \mathcal{F}_n we can find a common realization for y which makes $\varphi(x; y, z)$ witnesses ATP in free variable x. Thus we can reduce the arity of free variable of witness of ATP and by repeating this we obtain a witness of ATP in a single free variable.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Question

• Is there an example of strictly NATP theory? (an NATP theory which is not NTP₁, not NSOP₁)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Is there a suitable independence notion for NATP?
- Is there a Kim-Pillay style criterion for NATP?

References

- [1] Kota Takeuchi and Akito Tsuboi, On the existence of indiscernible trees, Annals of Pure and Applied Logic, 2012.
- [2] Artem Chernikov and Nicholas Ramsey, On model-theoretic tree properties, Journal of Mathematical Logic, (2016).
- [3] Byunghan Kim and Hyeung-Joon Kim, Notions around tree property 1, Annals of Pure and Applied Logic 162 (2011).
- [4] Lynn Scow, Indiscernibles, EM-types, and Ramsey classes of trees, Notre Dame Journal of Formal Logic, (2015).
- [5] Artem Chernikov, Theories without tree tree property of the second kind, Annals of Pure and Applied Logic, (2013)
- [6] Nicholas Ramsey, A note on NSOP₁ in one variable, The Journal of Symbolic Logic, (2019).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

[7] Wilfrid Hodges, Model theory, Cambridge University Press, Cambridge, (1993).