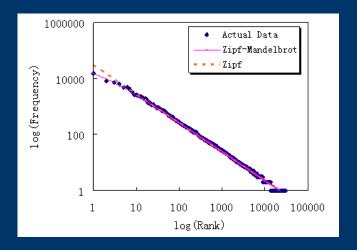
Adopting Description Logics to NLP: Towards the Formal Semantics of the Natural Language

2021. 01. 14 신승우, 오주민, 노형종, 이연수


What is Natural Language Processing(NLP)?

Teaching Natural Language to Computers

- NLP: Teaching computers to understand language
 - Humans can understand natural language easily
 - However, computers are not...
- Major Difficulties in NLP
 - Vague objective : What is the *Semantic* of natural language?
 - Data sparsity : Zipf's Law

What is Natural Language Processing(NLP)?

Zipf's Law: Sparsity of the Natural Language

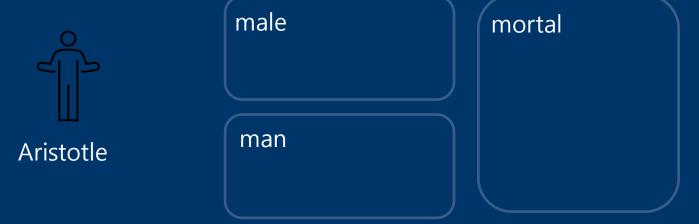
The distribution of word frequencies in the novel "Ulysses"

→ Most words are very 'Rare'!!

Meaning Representation(MR) of Natural Language

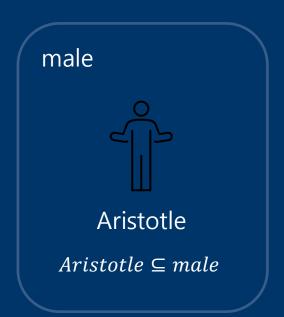
Two Major Paradigms

- Why MR?
 - A computable, standardized representation of natural language
 - "Believed" to carry semantics of natural language
- Two Major Approaches
 - Symbolic Representation Approach
 - Vector Representation Approach


MR of Natural Language: The Symbolic Approach

Symbolic Approach

- Symbolic MR
 - Adopting meta-language for Semantic Representation
 - Usually First-Order Logic, Lambda-Calculus Style ex) Aristotle is a human \rightarrow Aristotle \subseteq human
- Pros & Cons
 - Pros: Human-readable
 - Cons: Difficulty in sparsity handling / verification


Why does sparsity matter?

- Consider following three sentences;
- 1. Aristotle is a male.
- 2. Aristotle is a man.
- 3. Man is mortal.

Why does sparsity matter?

Aristotle is a male.

Why does sparsity matter?

Aristotle is a male.

male

Aristotle $Aristotle \subseteq male$

Aristotle is a man.

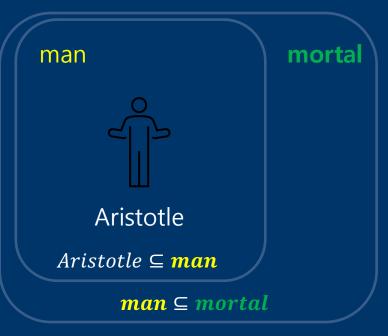
Why does sparsity matter?

Aristotle is a male.

male

Aristotle $Aristotle \subseteq male$

Aristotle is a man.



Why does sparsity matter?

Aristotle is a male.

 Aristotle is a man.

Man is mortal.

Why does sparsity matter?

Why does sparsity matter?

Aristotle is a male.

male

Aristotle $Aristotle \subseteq male$

Man is mortal.

Deep Learning Approach

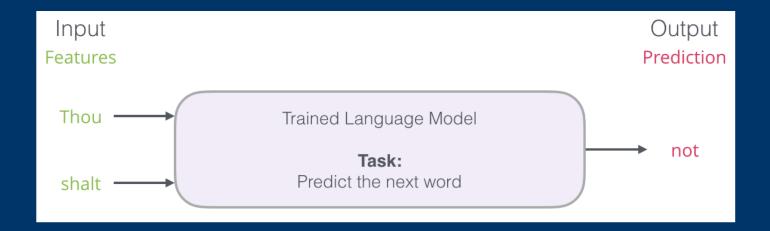
- Vector as MR
 - Extract abstract features automatically from text data
- Vector of Features
 - Example: Big Five Personality Trait Test
 - Express personality as 5-dimension vectors

Openness to experience — 79	out	of	100
Agreeableness 75	out	of	100
Conscientiousness 42	out	of	100
Negative emotionality 50	out	of	100
Extraversion 58	out	of	100

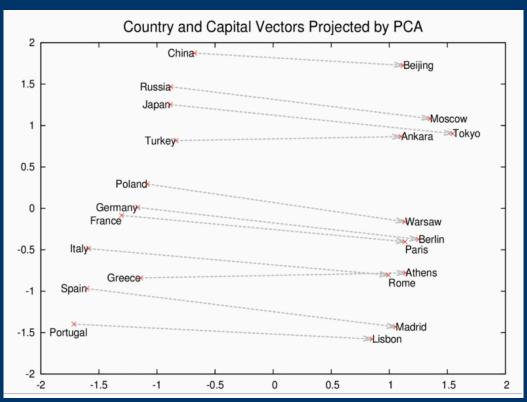
Very Quick Introduction to word2vec

- How do we represent a word as a vector?
 - "You shall know a word by the company it keeps" J.R.Firth
- Word2vec Scheme
 - Express word as a vector
 - Train the vector to contain semantics of each word

input/feature #2

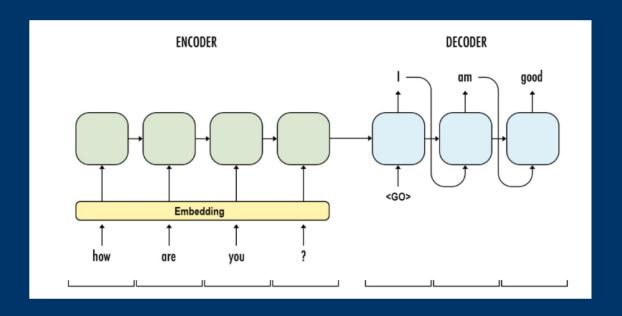

Very Quick Introduction to word2vec

input/feature #1

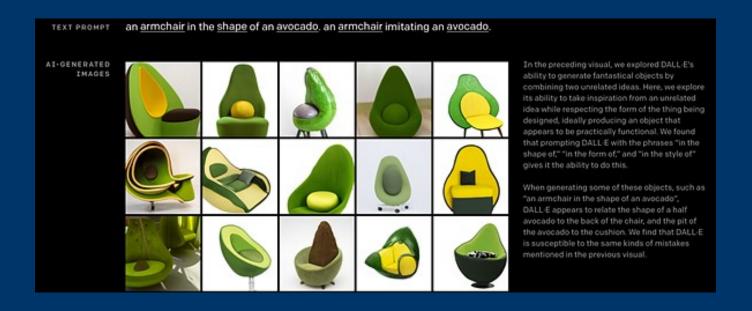

output/label

Thou shalt

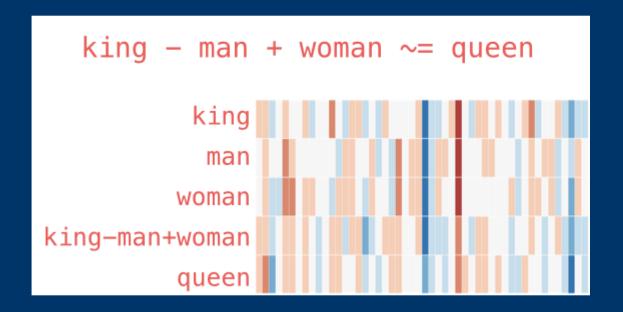
Very Quick Introduction to word2vec



Very Quick Introduction to word2vec


Deep Learning Approach

- Word → Vector. How about sentences?
 - Words → sequence of vectors → sentence vector!


Pros of vector-based MR

The Chinese Room Nowadays....

Cons of vector-based MR

So "what" Actually Happens in the Room?

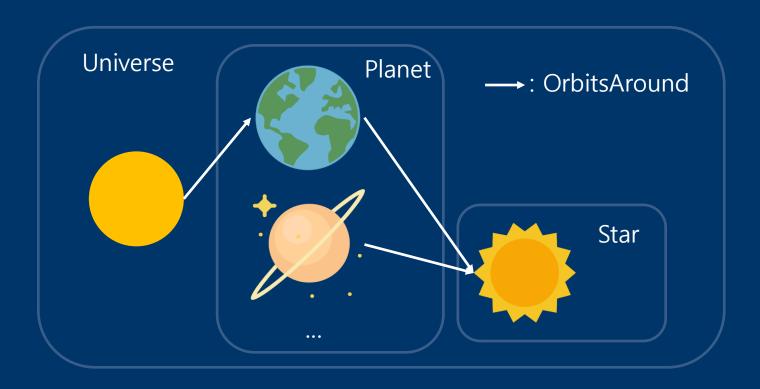
Why Symbolic + Distributional?

Benefits of Augmenting Distributional Semantics

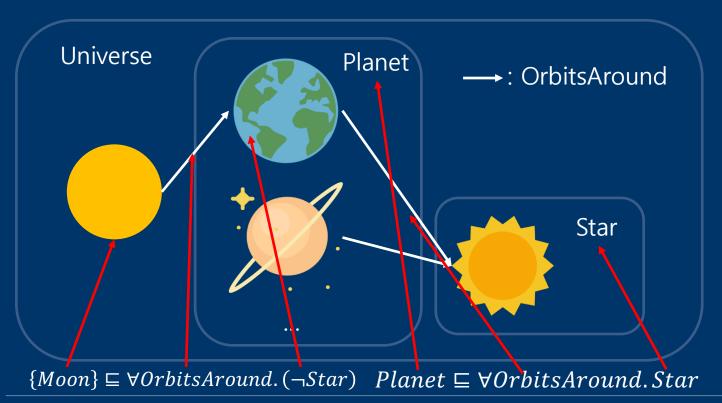
Distributional Semantic Augmented Formal Semantic

- Similarity between Semantics
- Probabilistic Deduction : Deduction to Classification
 - ex) $P(Aristotle \subseteq male \rightarrow Aristotle \subseteq man)$ = $P(mankind \subseteq human)$
 - $mankind \subseteq human$: classification problem
 - Solvable by embedding
 - Interpretable reasoning

Sentence -> Description Logic


Quick Introduction to DL

Description Logic Formula : $S \sqsubseteq \forall V. O \equiv S \subseteq \{x \mid \exists y, V(x, y) \land y \in O\}$


- S, O: Set
- V : Relationship (a binary predicate)

```
Ex)  \{Moon\} \sqsubseteq \forall OrbitsAround. (\neg Star)   Planet \sqsubseteq \forall OrbitsAround. Star
```

Sentence → Description Logic

Quick Introduction to DL: Solar System Example

Sentence → Description Logic

Recursive / Iterative Composition

- Make parse tree of a given sentence
- Preprocessing : 안긴 문장 분할, 주어 앞 부사구 삭제 등
- Re-parse processed sentence segments
- Recursively get formula corresponding to each constituent
- Compose subtree-formulae according to the rules

Recursively transform SOV-sentence to DL Formula

```
sent2dl(SOV - sentence)
= sent2dl(S) \sqsubseteq \forall sent2dl(V). sent2dl(O)
```

Sentence → Description Logic Example

ex) 예시 문장 변환 kt는 수원에서 열린 NC와의 시즌 14차전 경기에서 10-0으로 대승을 일궈냈다.

- 문장 Preprocessing
 - kt는 경기에서 10-0으로 대승을 일궈냈다.
 - NC와의 시즌 14차전 경기가 수원에서 열렸다.

Sentence → Description Logic Example

ex) 예시 문장 변환 kt는 수원에서 열린 NC와의 시즌 14차전 경기에서 10-0으로 대승을 일궈냈다.

- 문장 Re-parse
 - (VP

```
(NP-SBJ kt는)
(NP-AJT 경기에서)
(NP-AJT 10-0으로)
(NP-OBJ 대승을)
(VP 일궈냈다.))
```

Sentence → Description Logic Example

ex) 예시 문장 변환 kt는 수원에서 열린 NC와의 시즌 14차전 경기에서 10-0으로 대승을 일궈냈다.

- 문장 형태에 맞는 rule 적용

```
ex) (VP (NP-SBJ) (NP-AJT*) (NP-OBJ) (VP)) 의 경우, f(NP - SBJ) \subseteq \forall f(NP - AJT) \circ f(VP).f(NP - OBJ) 의 규칙 적용.
```

- 재귀적으로 depth가 2인 트리가 될 때까지 적용, 그 후에는 base-rule 적용
 - ex) (NP (kt NNP) (는 JX)) \rightarrow {kt}
- 그 후 병합 (Principle of Compositionality)

Augmenting Distributional Semantics to Logical Formula

Giving Similarity Between Logic Formulae

Given two DL Formulae

$$S_1 \sqsubseteq \forall V_1. O_1$$
$$S_2 \sqsubseteq \forall V_2. O_2$$

Distance between formulae is defined as

$$sim(S_1, S_2) + sim(V_1, V_2) + sim(O_1, O_2)$$

where

$$sim(a,b) = w2v(a,b), \qquad a,b \in Vocab$$

$$= \min_{\{\pi(a),\pi(b)\}} \left[\sum_{i \in \pi(a),j \in \pi(b)} w2v(i,j) \right], \qquad a,b \text{ is Set}$$

Experimental Verification

On unsupervised sentence clustering

Dataset : Baseball match recap data Benchmark

- Benchmark 1 : Multitask-Learning
 - Sentence Representation Learning Task via Quick Thought
 - Seq2Seq based Neural Machine Translation Task
- Benchmark 2: Sentence-Bert
- Sentence-transformer의 multilingual 옵션 적용 Metric : AMI , NMI

Experimental Verification

	Multitask Learning	Sentence-Bert	Ours
AMI	0.12 / 0.47	0.12	0.65
NMI	0.11 / 0.48	0.10	0.65

Experimental Verification

Example Results

Benchmark(Multitask-Learning)	ours(sent2dl)
 두산은 4월 15일 고척 스카이돔에서 열린 키움 과의 원정 경기에서 3-2로 승리했다. LG는 19일 고척에서 열린 키움과의 원정 경기에 서 8-3으로 이겼다. NC는 시즌 순위 10위를 유지했다. 한화는 5월 30일 대전 한화생명 이글스 파크에 서 열린 NC와 7차전 홈 경기에서 10-4로 이겼다, 	 기움 임병욱이 1안타 1타점으로 팀 승리에 기여했다. 7번 지명타자로 출전한 김동엽이 2타수 1득점의 활약했다. 데뷔전을 치룬 이도윤은 1타수 무안타에 그쳤다. 데뷔전을 치룬 이도윤은 1타수 무안타로 물러났다. 박기혁은 4타수 1안타 1타점으로 팀 승리에 기여했다.

Conclusion

- Things done
 - Tried to Merge vector-based MR and symbolic MR
 - Made Description-Logic based MR
 - Only SYNTAX, no interpretation/formal semantic
 - Indirectly verified via unsupervised clustering task
- Further TODOs
 - Assign formal semantics to proposed language

