Towards Complexity Classification of Partial Differential Equations

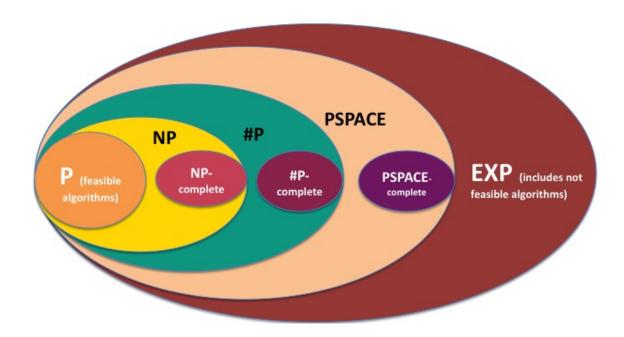
Svetlana Selivanova

KAIST

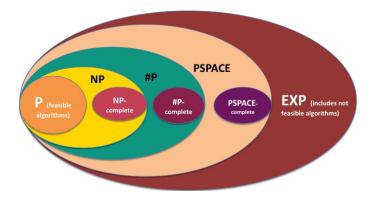
The first Korea Logic Day 2021, January 14

ΚΔΙΣΤ

Complexity hierarchy

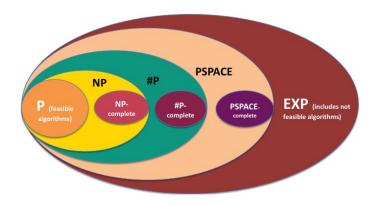


"Real" / "Continuous" Computability and Complexity Theory



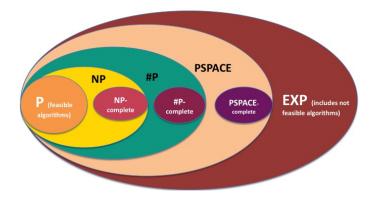
- Ker-I Ko. Complexity Theory of Real Functions, 1991.
- Klaus Weihrauch. Computable Analysis, 2000.

Complexity classification of "continuous" problems



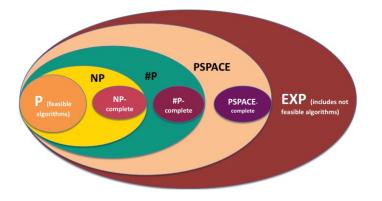
- max f: **NP**-complete
- $\int_{0}^{x} f(t) dt$: $\sharp \mathbf{P}$ -complete
- $\int_{0}^{1} f(t) dt$: $\sharp \mathbf{P}_1$ -complete
- Solutions of ODEs $\left[\frac{du}{dt} = f(t, u), \quad u(0) = u_0\right]$: **PSPACE**-complete in general

Complexity classification of "continuous" problems

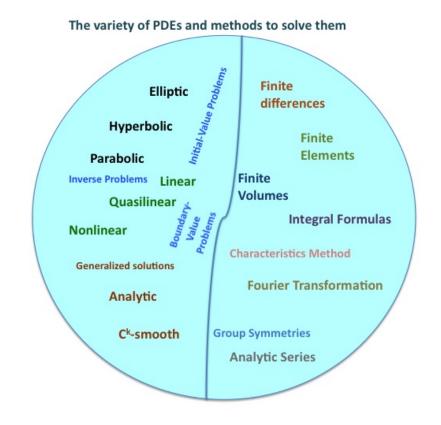


• PDEs: (elliptic) Dirichlet problem for the Laplace equation

Complexity classification of "continuous" problems



- PDEs: (elliptic) Poisson problem in #P, #P₁-hard [Kawamura, Steinberg, Ziegler 2017]
- How about other PDEs?



Outline of the talk

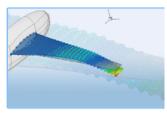
- Motivation
- Real Complexity Classes
- Current progress for PDEs
 - ▷ Finite Approximation method and Exponential Linear Algebra
 - ▷ Analytic series and PTIME computability
 - ▷ A hardness result
- Perspectives and future work

MOTIVATION

- ▷ Exact Real Computation (ERC) and Partial Differential Equations (PDEs)
- ▷ Very brief reminder about PDEs
- ▷ How does Classifying PDEs by their Algorithmic Complexity help?

- ♦ Motivation for Exact Real Computation
 - Computing solutions with guaranteed prescribed precision is important
 - For safety critical applications: accumulation of errors can lead to disasters!
 - For small scale applications like particle physics: high precision needed!

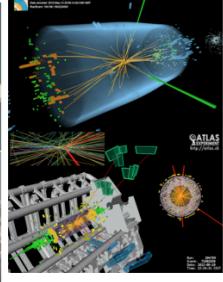
Narrows Bridge (Tacoma, Wash.) broke down in 1940. In credit: Public domain image, from the Seattle Post-Intelligencer 1940



Under flutter effects, aircraft wings can bend or break off, leading to numerous plane crashes.

Image credit: Netherlands Aerospace Center / NRL

Space shuttle Challenger exploded in 1986. Image credit: Michael Hindes – West Springfield, MA



Candidate Higgs boson events from collisions between protons. Image credit: CERN Document Server

- ♦ Motivation for Exact Real Computation
 - It would be great for numerical package users to have the result without thinking about error bounds while still having it accurate
 - ▷ Most software packages
 - Are restricted by **floating points**: at most 53 digits of output with double precision.
 - Contain complicated sequences of computation hidden from the users: it is hard to control the error propagation.
 - For problems with big modulus of continuity or discontinuities, there can be a wrong result! Users need to be careful!

Exact Real Computation approach

- \triangleright Exact Real Computation has \mathbb{R} (real numbers) as **exact** data type
- ▷ Computations **approximate** output to **guaranteed** precision 2^{-n} given by the user (i.e., computes **any** *n* digits versus fixed 53 in double precision)
- \triangleright Computing a function $t \mapsto \mathbf{u}(t)$:

$$|t - \frac{t_m}{2^m}| < 2^{-m} \rightarrow ||\mathbf{u}(t) - \frac{u_n}{2^n}|| < 2^{-\mathbf{n}}$$

 t_m , u_n integers, m = m(n) modulus of continuity of **u**

- ▷ Exact Real Computation packages: iRRAM, ARIADNE, Aern
- \triangleright We aim to
 - Develop the necessary theory (complexity classification!)
 - Create Exact Real Computation solvers for PDEs to be used for applications

♦ Partial Differential Equations (PDEs)

- PDEs describe various processes { evolving in several (e.g. time and space) directions
- Important phenomena from nature to engineering are modeled + by PDEs
- Current vast methodologies for solving them still remain *highly limited* without an overall theoretical framework.
- Numerical methods and packages *suffer from* floating point errors and computational instabilities.

General form of a PDE:

$$\begin{cases} Lu(x) = f(x), x \in \Omega \subset \mathbb{R}^k \\ \mathcal{L}u(x)|_{\Gamma} = \varphi(x|_{\Gamma}), \Gamma \subseteq \partial \Omega. \end{cases}$$

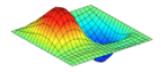
Differential operator:

$$L\mathbf{u} = \sum_{|\alpha|=k} a_{\alpha}(D^{k-1}\mathbf{u}, \dots, \mathbf{u}, y)D^{\alpha}\mathbf{u} + a_{0}(D^{k-1}\mathbf{u}, \dots, \mathbf{u}, x), \quad D^{\alpha}\mathbf{u} = \frac{\partial^{\alpha_{1}}\dots\partial^{\alpha_{k}}}{\partial x_{1}^{\alpha_{1}}\dots\partial x_{k}^{\alpha_{k}}}$$

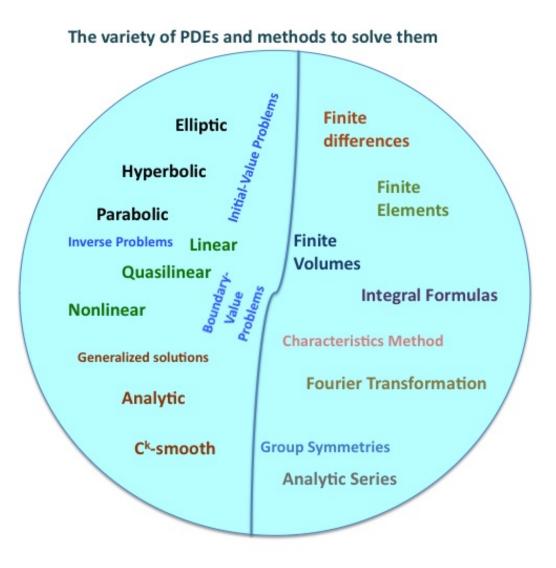
$$\triangleright \quad \frac{\partial^2}{\partial t^2}u - \Delta u = 0$$
 wave equation

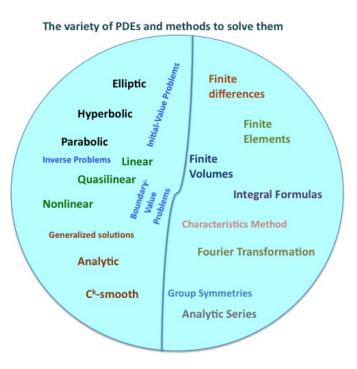
$$\triangleright \quad \frac{\partial}{\partial t}u - \Delta u = 0$$
 heat equation

 acoustics, elasticity, electromagnetism, fluid dynamics, neuroscience, quantum physics etc.



Solution of the 2D Wave equation (Image credit: Wikipedia)





Goals:

- Develop a uniform framework for solving (important classes of) PDEs with guaranteed arbitrary precision given by the user, which is crucial for safety critical applications

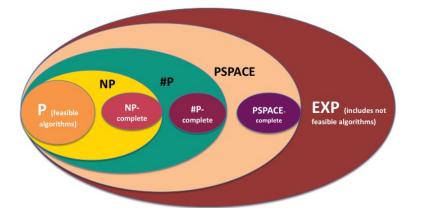
$$|u - u^{(n)}|| < 2^{-n}$$

- Classify PDEs by their algorithmic complexity.

- Based on this classification we develop and implement optimal and reliable algorithms.

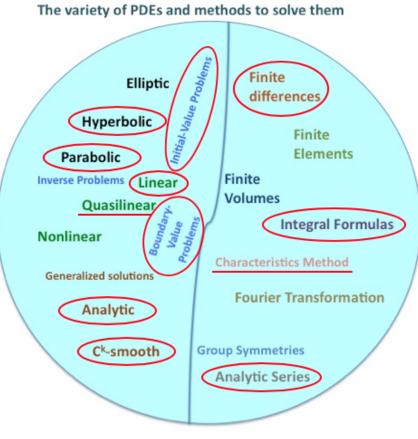
Classifying PDEs by their Algorithmic Complexity

- What amount of resources (time, memory cells) is needed to solve a particular problem?
- Examples: n^k (feasible), $\log n$ (runs fast), 2^n (can run a million years)
- Which algorithm is **optimal**?
- To investigate these problems, we use the discrete complexity hierarchy.
 - It relates to the "**P=NP?**" Millenium problem.



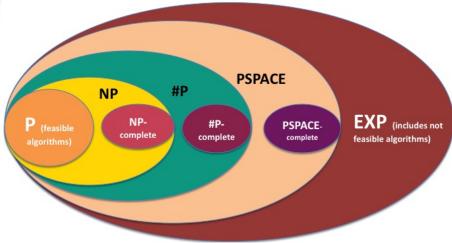
- P: algorithms running in polynomial time (feasible) n^k
- **PSPACE**: algorithms using polynomial amount of memory cells
- EXP: algorithms running in exponential time (not feasible) 2ⁿ

Classifying PDEs by their Algorithmic Complexity



Our strategy:

- Investigate complexity of Exact Real Computation adaptations of various methods
- Then try to optimally match the PDE with a complexity class (with respect to the parameter n for precision 2^{-n})



REAL COMPLEXITY

- ▷ Brief reminder about discrete complexity classes
- ▷ Main real complexity classes
- Examples of what type of results we are proving / interested to prove

Discrete complexity classes

- $P = \{L \subseteq \mathbb{N} \mid \text{decidable in polynomial time}\}$
- $FP = \{f : \mathbb{N} \to \mathbb{N} \mid \text{computable by a deterministic Turing machine within time polynomial in the binary length of the input}$
- $NP = \{L \subseteq \mathbb{N} \mid \text{verifiable in polynomial time}\}$ (or: accepted by a non-deterministic Turing machine within polynomial time)
- $\sharp P = \{f : \mathbb{N} \to \mathbb{N} \mid f \text{ counts the number of accepting computations of a non-deterministic polynomial-time Turing machine}\}$
- $\sharp P_1 = \{f : 2^{\mathbb{N}} \to \mathbb{N} \mid f \text{ counts the number of accepting computations of a non-deterministic polynomial-time Turing machine} \}$
- $PSPACE = \{L \subseteq \mathbb{N} \mid \text{decidable in polynomial space}\}$
- $EXP = \{L \subseteq \mathbb{N} \mid \text{decidable in exponential time}\}$

Real complexity classes

♦ For real numbers

Def. Computing $r \in \mathbb{R}$ in time $t : \mathbb{N} \to \mathbb{N}$ means to output $a_n \in \mathbb{Z}$ (in binary) s.th.

$$|r-a_n/2^n| \le 1/2^n,$$

in $\leq t(n)$ steps.

- **PTIME** if t(n)=poly(n)
- **EXP** if t(n)=exp(n)
- **PSPACE**: if the amount of memory s(n) is bounded polynomially in n

Real complexity classes

♦ For real functions

Def. Computing $f :\subseteq \mathbb{R} \to \mathbb{R}$ in time $t : \mathbb{N} \to \mathbb{N}$ means, on input $a_m \in \mathbb{Z}$ s.th.

$$|x-a_m/2^m| \le 1/2^m,$$

to output $b_n \in s.th$.

$$|f(x) - b_n/2^n| \le 1/2^n$$
,

in $\leq t(n)$ steps.

- **PTIME** if t(n)=poly(n)
- **EXP** if t(n)=exp(n)
- **PSPACE**: if the amount of memory s(n) is bounded polynomially in n

Examples

- ♦ The following are equivalent:
 - $\mathsf{FP}=\sharp P$
 - For every polynomial time computable $h:[0,1] \rightarrow \mathbb{R},$ the function

$$x \to \int_0^x h(t) dt$$

is again polynomial time computable.

(In other words, indefinite Riemann integration is " $\sharp P$ -complete")

Examples

- ♦ The following are equivalent:
 - $FP_1 = \sharp P_1$
 - For every polynomial time computable $h : [0,1] \to \mathbb{R}$, the real number $\int_0^1 h(t)dt$ is again polynomial time computable.

(In other words, definite Riemann integration is " $\sharp P_1$ -complete")

Examples

◇ PDEs: (elliptic) Dirichlet problem for the Laplace equation

 $\Delta u = f \text{ on } B_d(0,1);$

 $u = 0 \text{ on } \partial B_d(0,1)$]

(1) "in $\sharp \mathbf{P}$ ", (2) " $\sharp \mathbf{P}_1$ -hard" [Kawamura, Steinberg, Ziegler 2017].

(here
$$\Delta u = \sum_{j=1}^{d} \frac{\partial^2}{\partial x_j^2} u$$
)

CURRENT ACHIEVEMENTS OF COMPLEXITY OF PDEs

- ▷ General overview
- Finite Approximation method and Exponential Linear Algebra
- ▷ Analytic series and PTIME computability
- ▷ A hardness result: heat equation

♦ Hardness result: Heat equation

Theorem [Koswara, Pogudin, S., Ziegler'20]

$$\begin{aligned} \frac{\partial}{\partial t}u &= \Delta u \text{ on } [0,1]^2; \\ u(0) &= u(1), \quad u_x(0) = u_x(1) \end{aligned}$$
(1) "in $\sharp \mathbf{P}$ ", (2) " $\sharp \mathbf{P}_1$ -hard".

(here
$$\Delta u = \sum_{j=1}^{d} \frac{\partial^2}{\partial x_j^2} u$$
)

Theorem [Koswara, Pogudin, S., Ziegler'20]

$$rac{\partial}{\partial t}u = \Delta u ext{ on } [0,1]^2;$$
 $u(0) = u(1), \quad u_x(0) = u_x(1)$

(1) "in $\sharp \textbf{P}$ ", (2) " $\sharp \textbf{P}_1\text{-hard}$ ".

Proof sketch:

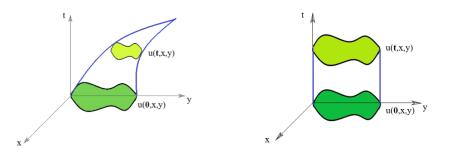
- in : using finite difference approach(see below)
- "♯P₁-hard": using smoothness properties of the solution operator and the following two facts [Ker I Ko'91]
 - ▷ There is a PTIME-computable h: $[0,1] \rightarrow [0,1]$ s. th. $\int_{0}^{1} h(t)dy$ is not computable in PTIME unless $FP_1 = \sharp P_1$
 - ▷ For every PTIME-computable **analytic** function $g : [0,1] \to \mathbb{R}$, $\int_{0}^{1} g(t) dt$ is computable in *PTIME*₁.

Our current findings on Complexity of PDEs

We made significant progress on classifying evolutionary systems of PDEs. Joint work with: I.Koswara, D. Lim, M.Ziegler (KAIST) G.Pogudin (École Politecnique), A.Kawamura (Kyoto University).

Type of PDE/ Functional class Analytic C ^k -smooth, k≥1	Linear Evolutionary Systems (including Hyperbolic and Parabolic), our results: P (method of analytic series) in general PSPACE for periodic #P (method of finite differences);	Linear Elliptic: Poisson Problem for Laplace equation, studied in [Kawamura Steinberg, Ziegler'17] P #P-complete	Quasilinear Evolutionary Systems, our results: #P EXP
W _p ^k (generalized,	Heat equation is #P-complete		
Sobolev spaces)	Currently working on developing the framework of real complexity for this case.		

$$\begin{cases} \frac{\partial}{\partial t}\vec{u} = \sum_{i=1}^{m} B_i(\vec{x}, \vec{u}) \frac{\partial}{\partial x_i} \vec{u}, \vec{x} \in \Omega, \\ \vec{u}(0, \vec{x}) = \varphi(\vec{x}), \end{cases}$$



$$\frac{\partial}{\partial t}\vec{u} = \sum_{i=1}^{m} B_i(x)\frac{\partial}{\partial x_i}\vec{u}, \quad \vec{u}(0,x) = \varphi(x), \quad (\mathcal{L}\vec{u}\mid_{\partial\Omega} = 0).$$

Theorem. (Koswara, Pogudin, S., Ziegler) Suppose the given IVP and BVP be well posed and admit a converging finite difference approximation (with certain natural properties).

 $B_i(x)$, $\varphi(x)$ fixed PTIME computable functions. Then:

- 1. The solution u is in **PSPACE**
- **2.** For the periodic boundary condition u is "in $\sharp P$ ".

Theorem. (Koswara, Pogudin, S., Ziegler) Suppose the given IVP and BVP be well posed and admit a converging finite difference approximation (with certain natural properties).

 $B_i(x)$, $\varphi(x)$ fixed PTIME computable functions. Then:

- 1. The solution u is in **PSPACE**
- **2.** For the periodic boundary condition u is "in $\sharp P$ ".

Examples to which this theorem applies:

1. Heat equation
$$\frac{\partial}{\partial t}u = \Delta u$$

2. Wave equation
$$\frac{\partial^2}{\partial t^2}u = \Delta u$$

3. Symmetric hyperbolic systems (including acoustics, elasticity, Maxwell equations)

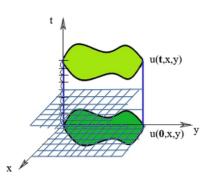
Some proof ideas

$$\frac{\partial}{\partial t}\vec{u} = \sum_{i=1}^{m} B_i(x) \frac{\partial}{\partial x_i} \vec{u}, \quad \vec{u}(0,x) = \varphi(x), \quad (\mathcal{L}\vec{u} \mid_{\partial\Omega} = 0).$$

Discretize with uniform grid steps τ , $h = 2^{-O(2^n)}$

$$\mathbf{u}^{(n)} = \mathbf{A_n}^{2^n} \varphi^{(n)}$$

Huge matrix powering!



Dimension of A_n is $O(2^n)$; powers are **uniformly bounded**

Lemmas

- 2^n vector $\times 2^n$ vector: #*P*-complete
- 2^n matrix to the power 2^n : *PSPACE*-complete
- !!! for the special case of periodic PDEs, 2^n matrix to the power 2^n is in #P (for 2-band matrices also in PTIME)

• Structured matrices ($C_{k,j,l}$ are circulant)

• Kronecker products of circulant matrices correspond to polynomials

$$A_{h(n)}^{(2)} = \mu I + \lambda \begin{bmatrix} J_1 & & \\ & \cdots & \\ & & J_1 \end{bmatrix} + \lambda \begin{bmatrix} J_2 & & \\ & \cdots & \\ & & J_2 \end{bmatrix} + \lambda \begin{bmatrix} 0 & I & \\ & \cdots & \\ I & 0 \end{bmatrix} + \lambda \begin{bmatrix} 0 & & I \\ I & 0 & \\ & \cdots & \\ & I & 0 \end{bmatrix},$$

where I is the identity matrix of a corresponding dimension;

$$J_1 \begin{bmatrix} 0 & 1 \\ & \cdots & \\ 1 & & 0 \end{bmatrix}; \quad J_2 = \begin{bmatrix} 0 & & 1 \\ 1 & 0 & \\ & \cdots & \\ & 1 & 0 \end{bmatrix}.$$

We can write this in tensor form

$$A_{h(n)}^{(2)} = \mu(I \otimes I) + \lambda(J_1 \otimes I) + \lambda(J_2 \otimes I) + \lambda(I \otimes J_1) + \lambda(I \otimes J_2)$$

Or in polynomial form

$$p^{(2)}(X,Y) = \mu + \lambda X + \lambda X^{-1} + \lambda Y + \lambda Y^{-1}$$

Note that already for the quadratic polynomial $P(X) = (1 + X + X^2)/3$, evaluation of the 'explicit' formula

$$\left(\frac{1}{3} + \frac{1}{3}X + \frac{1}{3}X^2\right)^K [X^J] = 3^{-K} \cdot \sum_{\substack{0 \le \mu, \nu \le K \\ \mu + 2\nu = M}} \frac{K!}{\mu! \cdot \nu! \cdot (K - \mu - \nu)!}$$
(1)

involves terms like K! of value, and the sum with a number of terms, doubly exponential in k: not at all obvious to compute in $\sharp P$.

• For raising polynomials to huge powers Cauchy's integration formula is applicable!

We can express any single desired coefficient of P^M as loop integral over $P^M(z)/z^{M+1}$ for |z| = 1 running over the complex unit circle. And due to P having bounded powers, the values of $P^M(z)/z^{M+1}$ are bounded

• Integration is in $\sharp P!$

Complexity of linear PDEs: Analytic series

$$\frac{\partial}{\partial t}\vec{u} = \sum_{i=1}^{m} B_i(x)\frac{\partial}{\partial x_i}\vec{u}, \quad \vec{u}(0) = \varphi(x).$$

Theorem (Koswara, S., Ziegler) If φ , B_i are analytic, then

 $\diamond \varphi$, $B_i \in \mathsf{PTIME} \Longrightarrow \mathbf{u} \in \mathsf{PTIME}$

$$\vec{u}(t) = \sum_{k=0}^{\infty} \frac{t^k}{k!} \left(\sum_{i=1}^m B_i(x) \frac{\partial}{\partial x_i} \right)^k \varphi(x)$$

CONCLUSIONS AND PERSPECTIVE

▷ Summary

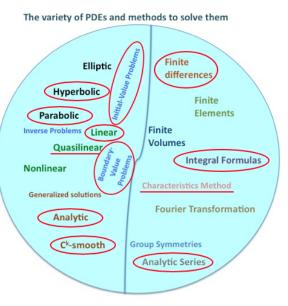
▷ Future work

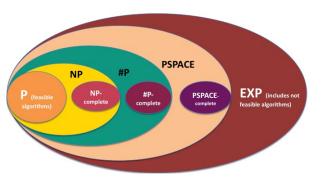
Our current findings on Complexity of PDEs

 For analytic systems, achieved poly-time algorithms P (feasible!)

$$\vec{u}(t) = \sum_{k=0}^{\infty} \frac{t^k}{k!} \left(\sum_{i=1}^m B_i(x) \frac{\partial}{\partial x_i} \right)^k \varphi(x)$$

- For finite difference methods, achieved **PSPACE** $\mathbf{u}^{(n)} = \mathbf{A_n}^{2^n} \varphi^{(n)}$
- For particular cases (e.g., periodic boundary conditions) improved to #P (class between P and PSPACE)
- For heat equation, proved no better algorithm better than [#]P₁ (in the nonanalytic C^k-smooth case): optimality result
- For quasilinear systems, at best #P algorithms for analytic case by now
- Development of a more general paradigm to include Sobolev functions is in progress





Our current progress on Exact Real Computation for PDEs

We have made progress in **implementation**.

Joint work with: H.Thies (Kyushi University), F.Steinberg (TU Darmstadt), Jiman Hwang, Martin Ziegler (KAIST), P. Collins (Maastricht University)

- Implementation of the analytic series method for Cauchy-Kovalevskaya type systems.
- Currently tested for acoustics and elasticity systems up to precision 2^{-300} .

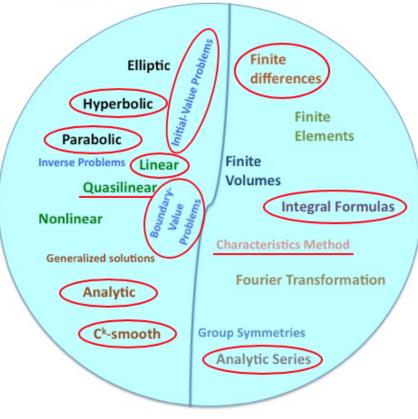
$$\begin{cases} \rho_0 \frac{\partial u}{\partial t} + \frac{\partial p}{\partial x} = 0, \\ \rho_0 \frac{\partial v}{\partial t} + \frac{\partial p}{\partial y} = 0, \\ \frac{\partial p}{\partial t} + \rho_0 c_0^2 \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0. \end{cases} \qquad \begin{cases} \frac{1}{2\mu} \frac{\partial \sigma_{ij}}{\partial t} - \frac{\lambda}{2\mu(3\lambda + 2\mu)} \delta_{ij} \frac{\partial(\sigma_{11} + \sigma_{22} + \sigma_{33})}{\partial t} - \frac{1}{2} (\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}) = 0, \\ \rho \frac{\partial u_i}{\partial t} - \frac{\partial \sigma_{ij}}{\partial x_j} = 0, \end{cases}$$

Concluding remarks

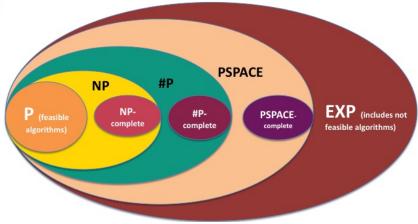
- Seems like PDEs are either PTIME or $\prescript{P1}$ -hard
- The case of analytic initial data is much easier, allows PTIME algorithms
- The popular finite difference method is not quite suitable for Exact Real Computation

Future work

The variety of PDEs and methods to solve them



- Optimality for broader classes
- Development of PDE solvers
- Sobolev functions
- Nonlinear equations



THANK YOU FOR YOUR ATTENTION!