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Complexity hierarchy

NP- #P- PSPACE- EXP {includes not
complete complete complete feasible algorithms)




“Real” / “Continuous” Computability and Complexity Theory

o Ker-I Ko. Complexity Theory of
Real Functions, 1991.

PSPACE.-
complete

e Klaus Weihrauch. Computable
Analysis, 2000.




Complexity classification of ‘“‘continuous’” problems

e max f: NP-complete

f f(t)dt: gP-complete
0

PSPACE.-
complete

} f(t)dt: gP1-complete
0

e Solutions of ODEs

[% = f(t,u), u(0) = uol:
PSPACE-complete in general



Complexity classification of ‘“‘continuous’” problems

PSPACE.-
complete

e PDEs: (elliptic) Dirichlet problem
for the Laplace equation

Au = f on By;(0,1);

w =0 on 8B,4(0,1)]

in #P, #Pi-hard [Kawamura,
Steinberg, Ziegler 2017]



ds to solve them
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e How about other PDEsS?




Outline of the talk
e Motivation
e Real Complexity Classes

e Current progress for PDEs
> Finite Approximation method and Exponential Linear Algebra
> Analytic series and PTIME computability

> A hardness result

e Perspectives and future work



MOTIVATION
> Exact Real Computation (ERC) and Partial Differential Equations (PDEs)
> Very brief reminder about PDEs

> How does Classifying PDEs by their Algorithmic Complexity help?



¢ Motivation for Exact Real Computation

> Computing solutions with guaranteed prescribed precision is important

— For safety critical applications: accumulation of errors can lead to
disasters!

— For small scale applications like particle physics: high precision needed!

Narrows Bridge (Tacoma, Wash.) bro!

credit: Public domain image, from the Seattle Post-Intelligencer 1940

Candidate Higgs boson events from collisions
Space shuttle Challenger exploded in 1986. Image crediz: Michael

Under flutter effects, aircraft wings can bend or

break off, leading to numerous plane crashes. . .
Hindes - West Springfield, MA

between protons. Image credit: CERN Document Server

[mage credit: Netherlands Aerospace Center / NRL



¢ Motivation for

> It would be great for numerical package users to have the result without
thinking about error bounds while still having it accurate

> Most software packages

— Are restricted by floating points: at most 53 digits of output with
double precision.

— Contain complicated sequences of computation hidden from the users:
it is hard to control the error propagation.

> For problems with big modulus of continuity or discontinuities, there can
be a wrong result! Users need to be careful!



approach
Exact Real Computation has R (real numbers) as exact data type

Computations approximate output to guaranteed precision 27" given by
the user (i.e., computes any n digits versus fixed 53 in double precision)

Computing a function ¢ — u(t):
tm _ u’rL —
t——| <27 = ||lu(t) — —|| < 2™
t— ] () - 22|
tm, un integers, m = m(n) modulus of continuity of u

Exact Real Computation packages: iRRAM, ARIADNE, Aern

We aim to
— Develop the necessary theory (complexity classification!)

— Create Exact Real Computation solvers for PDEs to be used for
applications



PDEs describe various processes
evolving in several (e.g. time and
space) directions

Important phenomena from na-
ture to engineering are modeled
by PDEs

Current vast methodologies for
solving them still remain highly
limited without an overall theo-
retical framework.

Numerical methods and packages
suffer from floating point errors
and computational instabilities.

General form of a PDE:

Lu(z) = f(z),z € Q C RF

{Eu(fc)lr = ¢(z |r), I CoQ.
Differential operator:

Lu= ) ao(D"1'u,...,u,y)D%u+
lo|=k
k—1 . 9°1..0%
+G,O(D u,...,u,ﬂ?), Dau—m
2 .
> Zu— Au=0 wave equation
> 2u— Au=0 heat equation
> acoustics, elasticity, electromag-
netism, fluid dynamics, neuro-
science, quantum physics etc.

Solution of the 2D Wave equation [Image credit: Wikipedia)



The variety of PDEs and methods to solve them
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The variety of PDEs and methods to solve them
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Goals:

- Develop a uniform framework for
solving (important classes of) PDEs
with

given by the user, which is crucial for
safety critical applications

llu — u(”)|| < 2"
- PDEs by their algorithmic
- Based on this classification we de-

velop and implement optimal and reli-

able algorithms.



oClassifying PDEs by their Algorithmic Complexity

e What amount of resources (time, memory cells) is needed to solve a
particular problem?

e Examples: n* (feasible), logn (runs fast), 2" (can run a million years)
e \Which algorithm is optimal?

e [0 investigate these problems, we use the discrete complexity hierarchy.

— It relates to the “P=NP7?" Millenium problem.

e [P:algorithms running in polynomial time
(feasible) n*

NP- . psPACE. | EXP (indudes not e PSPACE: algorithms using polynomial
amount of memory cells

complete col complete

feasible algorithms)

e EXP: algorithms running in exponential
time (not feasible) 2"




Classifying PDEs by their Algorithmic Complexity

to solve them

The variety of PDEs and methods

i Our strategy:
Finite ‘\\\ o Investigate complexity of Exact Real
differences N Computation adaptations of various

\ methods

Finite R
| Elements \ e Then try to optimally match the PDE
Finite with a complexity class (with respect to
I.' Volumes I'| the parameter n for precision 27")

Characteristics Method

Fourier Transformation

Group Symmetries
Analytic Series / \
NP- HP- PSPACE- EXP (includes not

complete complete complete feasible algorithms)




REAL COMPLEXITY

> Brief reminder about discrete complexity classes

> Main real complexity classes

> Examples of what type of results we are proving / interested
to prove



Discrete complexity classes
e P={L C N|decidable in polynomial time}

e FP={f:N— N | computable by a deterministic Turing machine within
time polynomial in the binary length of the input}

e VP = {L C N| verifiable in polynomial time}
(or: accepted by a non-deterministic Turing machine within polynomial
time)

e 1P ={f:N— N| f counts the number of accepting computations of a
non-deterministic polynomial-time Turing machine}

o 1P = {f:2Y — N| f counts the number of accepting computations of a
non-deterministic polynomial-time Turing machine}

¢ PSPACE = {L C N | decidable in polynomial space}

e EXP ={L CN|decidable in exponential time}



¢ For real numbers

Def. Computing r € R in time ¢t : N — N means to output a, € Z (in binary)
s.th.

lr —ay/2" < 1/2",
in <t(n) steps.

e PTIME if t(n)=poly(n)
e EXP if t(n)=exp(n)

e PSPACE: if the amount of memory s(n) is bounded polynomially in n



¢ For real functions

Def. Computing f .C R —R in time t: N — N means, on input a,, € Z s.th.
[x —am /2] < 1/2™,

to output b, € s.th.
|f(z) —bn/2"| < 1/27,

in <t(n) steps.

e PTIME if t(n)=poly(n)
e EXP if t(n)=exp(n)

e PSPACE: if the amount of memory s(n) is bounded polynomially in n



Examples

¢ The following are equivalent:
o FP={P
e For every polynomial time computable h : [0,1] — R, the function

T — /Ox h(t)dt

IS again polynomial time computable.

(In other words, indefinite Riemann integration is “4P-complete’)



Examples

¢ The following are equivalent:
o 'P1 =1HP

e For every polynomial time computable A : [0,1] — R, the real number
fol h(t)dt is again polynomial time computable.

(In other words, definite Riemann integration is “fP;-complete”)



Examples

o PDEs: (elliptic) Dirichlet problem for the Laplace equation
Au = f on Bd(O, 1);

u =0 on 0B4(0,1)]
(1) “ingP", (2) “4P1-hard” [Kawamura, Steinberg, Ziegler 2017].

d
(here Au = &Uz u)
=1



CURRENT ACHIEVEMENTS OF COMPLEXITY OF
PDEs

> General overview

> Finite Approximation method and Exponential Linear Alge-
bra

> Analytic series and PTIME computability

> A hardness result: heat equation



¢ Hardness result: Heat equation

Theorem [Koswara, Pogudin, S., Ziegler'20]

2u = Au on [0, 1]%;
ot

w(0) = u(1l), uzx(0) = ux(1)
(1) “in gP", (2)“tP1-hard” .

(here Au = Z axQ u)
]_



Theorem [Koswara, Pogudin, S., Ziegler'20]

2u = Au on [0, 1]%;
ot

w(0) = u(l), wuz(0) = u,(1)
(1) “in #P", (2) “4Pi-hard” .

Proof sketch:
e in : using finite difference approach(see below)

e “fPi-hard”: using smoothness properties of the solution operator and
the following two facts [Ker I Ko'91]

1
> There is a PTIME-computable h: [0,1] — [0,1] s. th. [h(¢)dy is not
0
computable in PTIME unless FP; = §P;

1
> For every PTIME-computable analytic function g : [0,1] — R, [ g(¢)dtis
0
computable in PT'IMF;.



Our current findings on Complexity of PDEs
We made significant progress on classifying evolutionary systems of PDEs.
Joint work with: I.Koswara, D. Lim, M.Ziegler (KAIST) G.Pogudin (Ecole Politecnique),

A.Kawamura (Kyoto University).

Type of PDE/ Linear Evolutionary Systems | Linear Elliptic: Poisson Problem Quasilinear

Functional class | (including Hyperbolic and for Laplace equation, studied in Evolutionary
Parabolic), our results: [Kawamura Steinberg, Ziegler'17] | Systems, our results:
Analytic P (method of analytic series) p #P
Ck-smooth, k=1 in general PSPACE #P-complete EXP
for periodic #P

(method of finite differences);
Heat equation is #P-complete

W k(generalized, ) . . )
Sobolev spaces) Currently working on developing the framework of real complexity for this case.

u(tx,y)




Si=Y Bi(o)sd,  @(0.2) = (), (Ld|po=0).

Theorem. (Koswara, Pogudin, S., Ziegler) Suppose the given
IVP and BVP be well posed and admit a converging finite dif-
ference approximation (with certain natural properties).

B;(z), o(x) fixed PTIME computable functions. Then:

1. The solution u is in PSPACE

2. For the periodic boundary condition u is “in §P”.



Theorem. (Koswara, Pogudin, S., Ziegler) Suppose the given IVP and BVP
be well posed and admit a converging finite difference approximation (with
certain natural properties).

Bi(x), po(x) fixed PTIME computable functions. Then:
1. The solution u is in PSPACE

2. For the periodic boundary condition u is “in §P".
Examples to which this theorem applies:

1. Heat equation %u = Au

. 2
2. Wave equation %u = Au

3. Symmetric hyperbolic systems (including acoustics, elasticity,
Maxwell equations)



Some proof ideas

Ja=" Biw) i, @(0,2) = (x), (L7 lsg=0)

i=1 ¢

Discretize with uniform grid steps 7, h = 2-0(2")
W) = A, 2" )

Huge matrix powering!

u(tx,y)

ulO,x.yii ¥

.
L7778 il
A .0 A
A AT

Dimension of A,, is O(2"™); powers are uniformly bounded



Lemmas

e 2" vector x 2" vector: #P-complete

e 2" matrix to the power 2": PSPACFE-complete

e !Il for the special case of periodic PDEs, 2™ matrix to the
power 2" is in #P (for 2-band matrices also in PTIME)



e Structured matrices (Cj ;; are circulant)

>

J
Ap = 3 1Qi®Chj1 ®Cpjo® - ®CpjL

A
i
A v
I A A
A n A
A m A
A
A




e Kronecker products of circulant matrices correspond to poly-
nomials
0 1
7o ]

5 J1 J2
AR =l + A + X
71 I o

where I is the identity matrix of a corresponding dimension;

0 1 0 1
Jl [ - 1 ] ; J2 - [ 1 .9. ] |
1 0 1 0

We can write this in tensor form

AR =p(I @D+ ML @D + ML)+ A @N1) + A1 & )

Or in polynomial form

PP(X,Y)=p+AX +AX T4+ AY + 27



Note that already for the quadratic polynomial P(X) = (1+ X +
X?2)/3, evaluation of the ‘explicit’ formula

1,1 12\ KT _K K!
THIX 43X (X = 378, (1)
<3 3 3 ) OSE;SK,LL!-V!-(K—M—V)!
pu+2v=M
involves terms like K! of value, and the sum with a number of
terms, doubly exponential in k: not at all obvious to compute in

HP.




e For raising polynomials to huge powers Cauchy’s integration
formula is applicable!

We can express any single desired coefficient of PM as loop
integral over PM(2)/2M+1 for |z| = 1 running over the complex
unit circle. And due to P having bounded powers, the values of
PM(2)/zMF1 gre bounded

e Integration is in §P!



i, 7(0) = p(x),

Theorem (Koswara, S., Ziegler) If ¢, B; are analytic, then

o, B € PTIME — ue PTIME

T — = tFsm ()0 g
i) = & (T B ) o)



CONCLUSIONS AND PERSPECTIVE

> Summary

> Future work



Our current findings on Complexity of PDEs

The variety of PDEs and methads to solve them

e [or analytic systems, achieved poly-time
algorithms P (feasible!)

a0 = Y 4(SL, Bi(x)a%)kso(:v)

k=0

w
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e For finite difference methods, achieved |
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Generalized solutions

\ Fourier Transformation ,
e For particular cases (e.g., periodic \\ {
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e For heat equation, proved no better al-
gorithm better than #P; (in the nonana-
lytic C*-smooth case): optimality result

e For quasilinear systems, at best P algo-

rithms for analytic case by now
PSPACE- EXP( cludes

complete feasible algor hm)

e Development of a more (general
paradigm to include Sobolev functions
iS in progress




We have made progress in implementation.

Joint work with: H.Thies (Kyushi University), F.Steinberg (TU Darmstadt),
Jiman Hwang, Martin Ziegler (KAIST), P. Collins (Maastricht University)

e Implementation of the analytic series method for Cauchy-Kovalevskaya
type systems.

e Currently tested for acoustics and elasticity systems up to precision 2

( Ou 8p_0
pO?“‘g_m— 3 i@o,;j_ A __8(011+022+033)_l(aui_i_auj)_o
<poa—?+a_p=0, 2u 0t 2p(3X+2p) ot 2°0z;  Om”
8p 9 ou ov o ou; _ 80’:;3’ .
ka+ﬂoco(a—-l-a—y)—0- Pat dz; =0,




Concluding remarks

e Seems like PDEs are either PTIME or §P1-hard

e [ he case of analytic initial data is much easier, allows PTIME
algorithms

e [ he popular finite difference method is not quite suitable for
Exact Real Computation



Future work

The variety of PDEs and methods to solve them

e

.-'.f-

Y Finite %
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||' Volumes '||
= i Integral Formulas ) |
II Nonlinear II
1 |
'l.\ Characteristics Method },I'

Generalized solutions

\
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e Optimality for broader classes
e Development of PDE solvers
e Sobolev functions

e Nonlinear equations

EXP (includes not

NP- . #P-
complete

PSPACE.

complete complete feasible algorithms)



THANK YOU FOR YOUR AT TENTION!



